Chapter 9

Scan Conversion (part 2) – Drawing Polygons on Raster Display

Triangle/Polygon Rasterization

Triangle (convex polygon) = intersection of edge half-spaces
- Defined by set of implicit line equations

Using Implicit Edge Equations

Usage:
- Go over each pixel on screen
- To be efficient restrict to bounding rectangle
- Check if pixel is inside/outside of triangle
- Use sign of edge equations

Implicit Formulation

- Triangle (convex polygon) = intersection of edge half-spaces
- Defined by set of implicit line equations

Computing Edge Equations

- Implicit equation of a triangle edge:
 \[L(x, y) = \frac{(x_2 - y_1)(x - x_1) - (y - y_1)(x_1 - x_2)}{x_1 - x_2} = 0 \]
 - see Bresenham algorithm
 - \(L(x, y) \) positive on one side of edge, negative on the other
- Question:
 - What happens for vertical lines?
Edge Equations

- Multiply with denominator
 \[L(x,y) = (y_e - y_s)(x - x_s) - (y_s - y_e)(x - x_e) = 0 \]
- Avoids singularity
- Works with vertical lines
- What about the sign?
 - Which side is in, which is out?

Edge Equations

- Counter-Clockwise Triangles
 - The equation \(L(x,y) \) as specified above is negative inside, positive outside
 - Flip sign:
 \[L(x,y) = -(y_e - y_s)(x - x_s) + (y_s - y_e)(x - x_e) = 0 \]
- Clockwise triangles
 - Use original formula
 \[L(x,y) = (y_e - y_s)(x - x_s) - (y_s - y_e)(x - x_e) = 0 \]

Scan Conversion of Polygons

- Implicit formulation doesn’t work for non-convex polygons
- Require per pixel, per edge computation
- Observation:
 - Straight line intersection with polygon = set of segments
 - Alternative: algorithm based on scan-line/edge intersections
 - Works for general polygons
 - Less per pixel computations

Scan Conversion of Polygons

- General Algorithm
 - Intersect each scanline with all edges
 - Sort intersections in x
 - Calculate parity to determine in/out
 - Fill the ‘in’ pixels
- Efficiency improvement:
 - Exploit row-to-row coherence using “edge table”

Edge Walking

- Special case: Scan-converting a trapezoid
 - Exploit continuous \(L \) and \(R \) edges
 - Predict intersections from one line to next
 - \(\text{scanTrapezoid}(x_L, x_R, y_L, y_U, \Delta x_L, \Delta x_R) \)
Scan Conversion - Polygons

Edge Walking

```plaintext
for (y=yB; y<=yT; y++) {
    for (x=xL; x<=xR; x++)
        setPixel(x,y);
    xL += DxL;
    xR += DxR;
}
```

Edge Walking Triangles

```plaintext
split triangles into two “trapezoids”
with continuous left and right edges
```

Issues
- Many applications have small triangles
- Setup cost is non-trivial
- Clipping triangles produces non-triangles
- Can be avoided through re-triangulation

Discussion
- Old hardware:
 - Use edge-walking algorithm
 - Scan-convert edges, then fill in scanlines
 - Compute interpolated values by interpolating along edges, then scanlines
 - Requires clipping of polygons against viewing volume
 - Faster if you have a few, large polygons
 - Possibly faster in software

Discussion:
- Modern GPUs:
 - Use edge equations
 - Plane equations for attribute interpolation
 - No clipping of primitives required
 - Faster with many small triangles
- Additional advantage:
 - Can control the order in which pixels are processed
 - Allows for more memory-coherent traversal orders
 - E.g. tiles or space-filling curve rather than scanlines

Rasterization Issues
(Independent of Algorithm)
- Exactly which pixels should be lit?
 - Those pixels inside the triangle edge (of course)
 - But what about pixels exactly on the edge?
 - Don't draw them: gaps possible between triangles
 - Draw them: order of triangles matters
Triangle Rasterization Issues

- **Shared Edge Ordering**
 - Need a consistent (if arbitrary) rule
 - Example: draw pixels on left or top edge, but not on right or bottom edge

- **Moving Slivers**

Triangle Rasterization Issues

- **Sliver**

Triangle Rasterization Issues

- These are ALIASING Problems
 - Problems associated with representing continuous functions (triangles) with finite resolution (pixels)
 - More on this problem when we talk about sampling...

Values in the interior

- Barycentric coordinates

Interpolation - access triangle interior

- Interpolate between vertices:
 - z
 - r,g,b - colour components
 - u,v - texture coordinates
 - N_x,N_y,N_z - surface normals
- Equivalent
 - Barycentric coordinates
 - Bilinear interpolation
 - Plane Interpolation
Barycentric Coordinates

- **Area**
 \[A = \frac{1}{2} |P_1P_2 \times P_3P_2|\]
- Barycentric coordinates
 \[a_1 = A_{P_1P_2P} / A, \quad a_2 = A_{P_2P_3P} / A, \quad a_3 = A_{P_3P_1P} / A \]
 \[P = a_1P_1 + a_2P_2 + a_3P_3 \]

Alternative formula: Bi-Linear Interpolation

- Interpolate quantity along L and R edges
 - (as a function of y)
 - Then interpolate quantity as a function of x

Another Alternative:

Plane Equation

- Observation: Values vary linearly in image plane
 - E.g.: \(r = Ax + By + C \)
 - \(r \) = red channel of the color
 - Same for \(g, b, Nx, Ny, Nz, z \...\)
- From info at vertices we know:
 \[r_1 = Ax_1 + By_1 + C \]
 \[r_2 = Ax_2 + By_2 + C \]
 \[r_3 = Ax_3 + By_3 + C \]
- Solve for \(A, B, C \)
- One-time set-up cost per triangle & interpolated value

Bi-Linear Interpolation

- Most common approach, and what OpenGL does
 - Perform Phong lighting at the vertices
 - Linearly interpolate the resulting colors over faces
 - Along edges
 - Along scanlines
 - Equivalent to Barycentric Coordinates!
 - interior: mix of \(c_1, c_2, c_3 \)
 - edge: mix of \(c_1, c_3 \)

Bi-Linear Interpolation

- **Formulation**
 \[P = \frac{c_1}{c_1 + c_2} \cdot P_1 + \frac{c_1}{c_1 + c_2} \cdot P_3 \]
 \[P = \frac{d_1}{d_1 + d_2} \cdot P_1 + \frac{d_1}{d_1 + d_2} \cdot P_3 \]
 \[P = \frac{b_1}{b_1 + b_2} \cdot P_1 + \frac{b_1}{b_1 + b_2} \cdot P_3 \]

Barycentric Coordinates

- Weighted combination of vertices
 \[P = a_1 \cdot P_1 + a_2 \cdot P_2 + a_3 \cdot P_3 \]
 \[a_1 + a_2 + a_3 = 1 \]
 \[0 \leq a_i \leq 1 \]
Discussion

- Which algorithm (formula) to use when?
 - Bi-linear interpolation
 - Together with trapezoid scan conversion
 - Plane equations
 - Together with implicit (edge equation) scan conversion
 - Barycentric coordinates
 - Too expensive in current context
 - But: method of choice for ray-tracing
 - Whenever you only need to compute the value for a single pixel

Validation

- All formulations should provide same value
- Can verify barycentric properties
 \[a_1 + a_2 + a_3 = 1 \]
 \[0 \leq a_1, a_2, a_3 \leq 1 \]

Shading

Input to Scan Conversion:
- Vertices of triangles (lines, quadrilaterals...)
- Color (per vertex)
 - Specified with \texttt{glColor}
 - Or: computed with lighting
- World-space normal (per vertex)
 - Left over from lighting stage

Shading Task:
- Determine color of every pixel in the triangle

Flat Shading

- Simplest approach: calculate illumination at one point per polygon (e.g. center)

Shading

- How can we assign pixel colors using this information?
 - Easiest: flat shading
 - Whole triangle gets one color (color of 1st vertex)
 - Better: Gouraud shading
 - Linearly interpolate color across triangle
 - Even better: Phong shading
 - Linearly interpolate the normal vector
 - Compute lighting for every pixel
 - Note: not supported by rendering pipeline as discussed so far

Validation

- All formulations should provide same value
- Can verify barycentric properties
 \[a_1 + a_2 + a_3 = 1 \]
 \[0 \leq a_1, a_2, a_3 \leq 1 \]
Flat Shading Approximations

- If an object really is faceted, is this accurate?
 - no!
 - For point sources, direction to light varies across the facet
 - For specular reflectance, direction to eye varies across the facet

Improving Flat Shading

- What if we evaluate Phong lighting model at each pixel of the polygon?
 - Better, but result still clearly faceted
- Gouraud Shading: For smoother-looking surfaces introduce vertex normals at each vertex
 - Usually different from facet normal
 - Used only for shading
 - Think of as a better approximation of the real surface that the polygons approximate

Vertex Normals

- Vertex normals may be
 - Provided with the model
 - Computed from first principles
 - Approximated by averaging the normals of the facets that share the vertex

Gouraud Shading Artifacts

- Often appears dull, chalky
- Lacks accurate specular component
 - if included, will be averaged over entire polygon

- Mach bands
 - Eye enhances discontinuity in first derivative
 - Very disturbing, especially for highlights

Copyright 2013. Alla Sheffer, UBC
Phong Shading
- Linearly interpolating surface normal across the facet, applying Phong lighting model at every pixel
 - Same input as Gouraud shading
 - Pro: much smoother results
 - Con: considerably more expensive

- Not the same as Phong lighting
 - Common confusion
 - Phong lighting: empirical model to calculate illumination at a point on a surface

Phong Shading Difficulties
- Computationally expensive
 - Per-pixel vector normalization and lighting computation!
 - Floating point operations required

- Lighting after perspective projection
 - Messes up the angles between vectors
 - Have to keep eye-space vectors around

- No direct support in standard rendering pipeline
 - But can be simulated with texture mapping, procedural shading hardware (see later)

Phong Shading

\[I_{\text{total}} = k_a I_{\text{ambient}} + \sum_{i=1}^{n_{\text{lights}}} I_i \left(k_d (n \cdot l_i) + k_s (v \cdot r_i)^{n_{\text{shiny}}} \right) \]

Remember: normals used in diffuse and specular terms

Discontinuity in normal's rate of change harder to detect

Shading Artifacts: Silhouettes
- Polygonal silhouettes remain