Chapter 9

Scan Conversion (part 2) – Drawing Polygons on Raster Display

Rendering Pipeline

Geometric Content → Model/View Transform → Lighting → Perspective Transform → Clipping → Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer
Triangle/Polygon Rasterization

Triangle (convex polygon) = intersection of edge half-spaces
- Defined by set of implicit line equations

Implicit Formulation
Using Implicit Edge Equations

Usage:
- Go over each pixel on screen
- To be efficient restrict to bounding rectangle
- Check if pixel is inside/outside of triangle
- Use sign of edge equations

Using Implicit Edge Equations

Implicit equation of a triangle edge:

\[
L(x, y) = \frac{(y_c - y_s)(x - x_s) - (y - y_s)}{(x_c - x_s)} = 0
\]

- see Bresenham algorithm
- \(L(x, y) \) positive on one side of edge, negative on the other

Question:
- What happens for vertical lines?
Edge Equations

- Multiply with denominator

\[L(x,y) = (y_e - y_s)(x - x_s) - (y - y_s)(x_e - x_s) = 0 \]

- Avoids singularity
- Works with vertical lines

- What about the sign?
- Which side is in, which is out?

Edge Equations

- Determining the sign

- Which side is “in” and which is “out” depends on order of start/end vertices...
- Convention: specify vertices in counterclockwise order
Edge Equations

- Counter-Clockwise Triangles
 - The equation $L(x,y)$ as specified above is negative inside, positive outside
 - Flip sign:
 $$L(x,y) = -(y_e - y_s)(x - x_s) + (y - y_s)(x_e - x_s) = 0$$

- Clockwise triangles
 - Use original formula
 $$L(x,y) = (y_e - y_s)(x - x_s) - (y - y_s)(x_e - x_s) = 0$$

Scan Conversion of Polygons

- Implicit formulation doesn’t work for non-convex polygons
- Require per pixel, per edge computation
- Observation:
 - Straight line intersection with polygon = set of segments
- Alternative: algorithm based on scan-line/edge intersections
 - Works for general polygons
 - Less per pixel computations
Scan Conversion of Polygons

- General Algorithm
 - Intersect each scanline with all edges
 - Sort intersections in x
 - Calculate parity to determine in/out
 - Fill the ‘in’ pixels
 - Efficiency improvement:
 - Exploit row-to-row coherence using “edge table”

Edge Walking

- Special case: Scan-converting a trapezoid
 - Exploit continuous L and R edges
 - Predict intersections from one line to next

\[
\text{scanTrapezoid}(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R)
\]
Edge Walking

\[
\text{scanTrapezoid}(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R)
\]

for \(y=y_B; y<=y_T; y++ \) {
 for \(x=x_L; x<=x_R; x++ \)
 setPixel\((x, y)\);
 \(xL += DxL \);
 \(xR += DxR \);
}

Split triangles into two “trapezoids” with continuous left and right edges

\[
\text{scanTrapezoid}(x_1, x_m, y_1, y_3, \frac{1}{m_{13}}, \frac{1}{m_{12}})
\]

\[
\text{scanTrapezoid}(x_2, x_1, y_2, y_3, \frac{1}{m_{23}}, \frac{1}{m_{12}})
\]
Edge Walking Triangles

Issues

- Many applications have small triangles
 - Setup cost is non-trivial
- Clipping triangles produces non-triangles
 - Can be avoided through re-triangulation

Discussion

- Old hardware:
 - Use edge-walking algorithm
 - Scan-convert edges, then fill in scanlines
 - Compute interpolated values by interpolating along edges, then scanlines
 - Requires clipping of polygons against viewing volume
 - Faster if you have a few, large polygons
 - Possibly faster in software
Discussion:

- Modern GPUs:
 - Use edge equations
 - Plus plane equations for attribute interpolation
 - No clipping of primitives required
 - Faster with many small triangles
- Additional advantage:
 - Can control the order in which pixels are processed
 - Allows for more memory-coherent traversal orders
 - E.g. tiles or space-filling curve rather than scanlines

Rasterization Issues
(Independent of Algorithm)

- Exactly which pixels should be lit?
 - Those pixels inside the triangle edge (of course)
 - *But what about pixels exactly on the edge?*
 - Don’t draw them: gaps possible between triangles
 - Draw them: order of triangles matters
Triangle Rasterization Issues

- Shared Edge Ordering
 - Need a consistent (if arbitrary) rule
 - Example: draw pixels on left or top edge, but not on right or bottom edge

Triangle Rasterization Issues

- Sliver
Triangle Rasterization Issues

- Moving Slivers

Triangle Rasterization Issues

- These are ALIASING Problems
 - Problems associated with representing continuous functions (triangles) with finite resolution (pixels)
 - More on this problem when we talk about sampling...
Values in the interior

Barycentric coordinates

Interpolation – access triangle interior

- Interpolate between vertices:
 - z
 - r,g,b - colour components
 - u,v - texture coordinates
 - \(N_x, N_y, N_z \) - surface normals
- Equivalent
 - Barycentric coordinates
 - Bilinear interpolation
 - Plane Interpolation
Barycentric Coordinates

- **Area**
 \[A = \frac{1}{2} \left\| \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} \right\| \]

- **Barycentric coordinates**
 \[a_1 = \frac{A_{P_2P_3P}}{A}, a_2 = \frac{A_{P_3P_1P}}{A}, \]
 \[a_3 = \frac{A_{P_1P_2P}}{A}, \]
 \[P = a_1P_1 + a_2P_2 + a_3P_3 \]

Barycentric Coordinates

- **weighted combination of vertices**
 \[P = a_1 \cdot P_1 + a_2 \cdot P_2 + a_3 \cdot P_3 \]
 \[a_1 + a_2 + a_3 = 1 \]
 \[0 \leq a_1, a_2, a_3 \leq 1 \]
Alternative formula: Bi-Linear Interpolation

- Interpolate quantity along L and R edges
 - (as a function of y)
 - Then interpolate quantity as a function of x

![Bi-Linear interpolation diagram]

\[
P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_3}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right)
\]
Bi-Linear Interpolation

- Most common approach, and what OpenGL does
 - Perform Phong lighting at the vertices
 - Linearly interpolate the resulting colors over faces
 - Along edges
 - Along scanlines
- Equivalent to Barycentric Coordinates!

Edge: mix of c_1, c_2

Interior: mix of c_1, c_2, c_3

Another Alternative: Plane Equation

- Observation: Values vary linearly in image plane
 - E.g.: $r = Ax + By + C$
 - r = red channel of the color
 - Same for g, b, Nx, Ny, Nz, z...
 - From info at vertices we know:
 \[
 r_1 = Ax_1 + By_1 + C \\
 r_2 = Ax_2 + By_2 + C \\
 r_3 = Ax_3 + By_3 + C
 \]
 - Solve for A, B, C
 - One-time set-up cost per triangle & interpolated value
Discussion

- Which algorithm (formula) to use when?
 - Bi-linear interpolation
 - Together with trapezoid scan conversion
 - Plane equations
 - Together with implicit (edge equation) scan conversion
 - Barycentric coordinates
 - Too expensive in current context
 - But: method of choice for ray-tracing
 - Whenever you only need to compute the value for a single pixel

Validation

- All formulations should provide same value
- Can verify barycentric properties

\[
a_1 + a_2 + a_3 = 1
\]
\[
0 \leq a_1, a_2, a_3 \leq 1
\]
Shading

Computing lighting impact inside triangle interior

Shading

- Input to Scan Conversion:
 - Vertices of triangles (lines, quadrilaterals...)
 - Color (per vertex)
 - Specified with glColor
 - Or: computed with lighting
 - World-space normal (per vertex)
 - Left over from lighting stage

- Shading Task:
 - Determine color of every pixel in the triangle
Shading

- How can we assign pixel colors using this information?
 - Easiest: flat shading
 - Whole triangle gets one color (color of 1st vertex)
 - Better: Gouraud shading
 - Linearly interpolate color across triangle
 - Even better: Phong shading
 - Linearly interpolate the normal vector
 - Compute lighting for every pixel
 - Note: not supported by rendering pipeline as discussed so far

Flat Shading

- Simplest approach: calculate illumination at one point per polygon (e.g. center)

- Obviously inaccurate for smooth surfaces
Flat Shading Approximations

- If an object really is faceted, is this accurate?

- no!
 - For point sources, direction to light varies across the facet
 - For specular reflectance, direction to eye varies across the facet
Improving Flat Shading

- What if we evaluate Phong lighting model at each pixel of the polygon?
 - Better, but result still clearly faceted
- Gouraud Shading: For smoother-looking surfaces introduce vertex normals at each vertex
 - Usually different from facet normal
 - Used only for shading
 - Think of as a better approximation of the real surface that the polygons approximate

Vertex Normals

- Vertex normals may be
 - Provided with the model
 - Computed from first principles
 - Approximated by averaging the normals of the facets that share the vertex
Gouraud Shading Artifacts

- Often appears dull, chalky
- Lacks accurate specular component
 - if included, will be averaged over entire polygon

Gouraud Shading Artifacts

- Mach bands
 - Eye enhances discontinuity in first derivative
 - Very disturbing, especially for highlights
Phong Shading

- Linearly interpolating surface normal across the facet, applying Phong lighting model at every pixel
 - Same input as Gouraud shading
 - Pro: much smoother results
 - Con: considerably more expensive

- Not the same as Phong lighting
 - Common confusion
 - Phong lighting: empirical model to calculate illumination at a point on a surface

\[I_{\text{total}} = k_a I_{\text{ambient}} + \sum_{i=1}^{\#\text{lights}} I_i \left(k_d (\mathbf{n} \cdot \mathbf{l}_i) + k_s (\mathbf{v} \cdot \mathbf{r}_i)^n \right) \]

Remember: normals used in diffuse and specular terms.

Discontinuity in normal's rate of change harder to detect.
Phong Shading Difficulties

- Computationally expensive
 - Per-pixel vector normalization and lighting computation!
 - Floating point operations required
- Lighting after perspective projection
 - Messes up the angles between vectors
 - Have to keep eye-space vectors around
- No direct support in standard rendering pipeline
 - But can be simulated with texture mapping, procedural shading hardware (see later)

Shading Artifacts: Silhouettes

- Polygonal silhouettes remain

![Gouraud vs Phong Shading](image)