Chapter 8

Scan Conversion – Drawing on Raster Display (part 1 - Lines)

Rendering Pipeline

- Discard geometry outside viewport window
Scan Conversion - Rasterization

Convert continuous rendering primitives into discrete fragments/pixels

- Lines
 - Basic (explicit)
 - Bresenham (Midpoint)
- Triangles
 - Implicit formulation
 - Scanline
 - Interpolation

Scan Conversion - Lines

[Diagram of a line drawn on a grid]

Copyright 2012, Alla Sheffer
Scan Conversion - Lines

Idea: Use Explicit Line Formula

Explicit - one coordinate as function of the others

\[y = f(x) \]
\[z = f(x, y) \]

Line

\[y = mx + b \]
\[y = \frac{(y_2 - y_1)}{(x_2 - x_1)}(x - x_i) + y_i \]

Typically separate into 4 (or 8) cases (why?)
Basic Line Drawing

Assume $x_1 < x_2$ & line slope absolute value is ≤ 1

Line (x_1, y_1, x_2, y_2)

begin

float $dx, dy, x, y, slope$;

$dx := x_2 - x_1$;

$dy := y_2 - y_1$;

$slope := \frac{dy}{dx}$;

$y := y_1$;

for x from x_1 to x_2 do

begin

PlotPixel $(x, \text{Round}(y))$;

$y := y + \text{slope}$;

end;

end;

Questions:
Can this algorithm use integer arithmetic?

Midpoint (Bresenham) Algorithm

- **Key Observation 1:**
 - At each step have ONLY 2 choices
 - East/North-East
Key Observation 2:
- Can decide based on whether midpoint is above/below line
- How?
 - Evaluate implicit line equation at
 \((x+1, y+1/2)\)

Midpoint (Bresenham) Algorithm

Bresenham Algorithm

Implicit formulation = distance (up to scale)
\[\tau = \{(x, y) | ax + by + c = xdy - ydx + c = 0\} \]
\[d(x, y) = 2(xdy - ydx + c) \]

- Given point \(P = (x, y)\), \(d(x, y)\) is signed distance of \(P\) to \(\tau\) (up to scale)
- \(d\) is zero for \(P \in \tau\)
Bresenham (Midpoint) Algorithm

- Starting point satisfies \(d(x_1, y_1) = 0 \)
- Each step moves right (east) or upper right (northeast)
- Sign of \(d(x + 1, y + \frac{1}{2}) \) indicates if to move east or northeast

\[\begin{align*}
&\text{Line} \ (x_1, y_1, x_2, y_2) \\
&\text{begin} \\
&\text{int} \ x, y, dx, dy, d; \\
&\text{x} \leftarrow x_1; \quad y \leftarrow y_1; \\
&dx \leftarrow x_2 - x_1; \quad dy \leftarrow y_2 - y_1; \\
&\text{PlotPixel} \ (x, y); \\
&\text{while} \ (x < x_2) \text{ do} \\
&\quad d = \frac{(2x + 2)dy - (2y + 1)dx + 2c}{2((x + 1)dy - (y + .5)dx + c)}; \\
&\quad \text{if} \ (d < 0) \text{ then} \\
&\quad \quad \text{begin} \\
&\quad \quad \quad x \leftarrow x + 1; \\
&\quad \quad \quad \text{end} \\
&\quad \quad \text{else} \text{ begin} \\
&\quad \quad \quad x \leftarrow x + 1; \quad y \leftarrow y + 1; \\
&\quad \quad \quad \text{end}; \\
&\quad \text{PlotPixel} \ (x, y); \\
&\text{end}; \\
&\text{end}; \\
\end{align*} \]

Copyright 2012, Alla Sheffer
Insanely efficient version (less computations inside the loop)
- compute d incrementally

At \((x_1, y_1)\)
\[
d_{\text{start}} = d(x_1 + 1, y_1 + \frac{1}{2}) = 2dy - dx
\]

Increment in \(d\) (after each step)
- If move east \(\Delta_e = d(x_2, y_2) - d(x_1, y_1) = 2((x + 1)dy - (y + \frac{1}{2})dx + c) - 2((x + 1)dy - (y + \frac{1}{2})dx + c) = 2dy
- If move northeast \(\Delta_{ne} = d(x_2, y_2) - d(x_1, y_1) = 2((x + 2)dy - (y + \frac{3}{2})dx + c) - 2((x + 1)dy - (y + \frac{1}{2})dx + c) = 2(dy - dx)

Distance to next line
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Bresenham Examples

- Intensity depends on angle
- Comment: extends to higher order curves – e.g. circles

Comparison: float/integer

Assume \(x_1 < x_2 \) & line slope is \(\leq 1 \)

Line (\(x_1, y_1, x_2, y_2 \))

begin
float \(dx, dy, x, y, \text{slope} \);
\(dx \leftarrow x_2 - x_1; \)
\(dy \leftarrow y_2 - y_1; \)
\(\text{slope} \leftarrow dy / dx; \)
y \leftarrow y_1;
for \(x \) from \(x_1 \) to \(x_2 \) do
begin
PlotPixel (\(x, \text{Round} \ (y) \));
y \leftarrow y + slope;
end;
end;

Line (\(x_1, y_1, x_2, y_2 \))

begin
int \(x, y, dx, dy, d, \Delta_x, \Delta_y \);
x \leftarrow x_1;
y \leftarrow y_1;
\(dx \leftarrow x_2 - x_1; \)
\(dy \leftarrow y_2 - y_1; \)
d \leftarrow 2 * dy - dx;
\Delta_x \leftarrow 2 * dy;
\Delta_y \leftarrow 2 * (dy - dx);
PlotPixel (\(x, y \));
while \((x < x_2) \) do
if \((d < 0) \) then
begin
\(d \leftarrow d + \Delta_x; \)
end;
else begin
\(d \leftarrow d + \Delta_y; \)
y \leftarrow y + 1;
end;
x \leftarrow x + 1;
PlotPixel (\(x, y \));
end;
end;
Implicit test

- Instead of clipping line in continuous space
- For each integer value of (x,y) test if inside window just before drawing
- Inefficient on CPU
- On a parallel (GPU) processor can be surprisingly fast

```plaintext
Line ( x1, y1, x2, y2 )
begin
float dx, dy, x, y, slope 
dx := x2 - x1;
dy := y2 - y1;
slope := dy / dx;
y := y1;
for x from x1 to x2 do
begin
y_int = Round ( y ) ;
if inside (x, y_int) PlotPixel ( x, y_int ) ;
y := y + slope;
end
end;
```

Scan Conversion of Lines

Discussion

- Integer: Bresenham
 - Good for hardware implementations (integer!)
- Floating Point
 - May be faster for software (depends on system!)
 - Easier to parallelize