Line and Polygon Clipping

Chapter 7

Clipping

Line and Polygon Clipping (2D)

Problem:
Given a 2D line/polygon and a window, clip the line/polygon to their regions that are inside the window.

- Objectives
 - Efficiency
 - (Parallelization)
- Two approaches
 - Explicit (continuous setting)
 - Implicit (discrete setting) - part of scan conversion

Rendering Pipeline

- Geometric Content
- Model/View Transform
- Lighting
- Perspective Transform
- Clipping
- Scan Conversion
- Texturing
- Depth Test
- Blending
- Frame-buffer

Explicit Solution: Line Segments

- Intersection of convex regions is convex
- Why?
 - L & D are convex - intersection is convex
 - single connected segment of L
- Clipping uses intersections of L with four boundary segments of window D

Basic Method

- Works, but inefficient for lines OUTSIDE D
- Four intersection tests
- Note: need special care for vertices ON window edges

Convexity

Set $C \subseteq \mathbb{R}^d$ is **convex** if for any two points $p, q \in C$ and any $\alpha \in [0,1]$, $\alpha p + (1-\alpha)q \in C$

2D Projection of convex 3D shape is convex

Discard geometry outside viewport window

Copyright Alla Sheffer UBC 2013
Copyright Alla Sheffer UBC 2013
Cohen-Sutherland Algorithm (cont’d)

C-S-Clip(P1, P2, P3, P4)

(assume zoff < zon)

P1 = (x1, y1, z1) P2 = (x2, y2, z2) P3 = (x3, y3, z3) P4 = (x4, y4, z4)

if (zoff < zon) then return
 if ((zoff = zon) and (zoff = 0)) then draw (P1, P2)
 else if (OutsideWindow(P1)) then
 begin
 End if
 end

begin
 if (OutsideWindow(Window)) then
 return
 end

begin

 if (OutsideWindow(Window)) then
 return
 end

 if (zoff < zon) then return

 if ((zoff = zon) and (zoff = 0)) then draw (P1, P2)

 if ((zoff < zon) or (zoff > zon)) then return

 end

end

Determine portion of line inside axis-aligned box (viewing frustum in NDC)
Simple extension of 2D algorithms
After projection transform
 clipping volume always the same
 xmin=ymin=zmin= -1, xmax=ymax=zmax= 1
 boundary lines become boundary planes
 but bit-codes still work the same way

3D clipping

Triangle Clipping

How does intersection of rectangle & triangle looks like?
 How many sides?

How to expand clipping to triangles?
 Hint: it is convex
 Will sketch on the board...

Copyright Alla Sheffer UBC 2013