Chapter 9

Scan Conversion (part 2)-
Drawing Polygons on Raster
Display

Implicit Formulation
- Triangle (convex polygon) = intersection of
delta half-spaces
- Defined by set of implicit line equations

Using Implicit Edge Equations
Usage:
- Go over each pixel on screen
 - To be efficient restrict to bounding rectangle
 - Check if pixel is inside/outside of triangle
 - Use sign of edge equations

Computing Edge Equations
- Implicit equation of a triangle edge:
 \[L(x,y) = (y_2 - y_1)(x - x_1) - (x_2 - x_1)(y - y_1) = 0 \]
 - see Bresenham algorithm
 - \(L(x,y) \) positive on one side of edge, negative
 on the other
- What about the sign?
 - Which side is in, which is out?

Copyright 2012. Alla Sheffer, UBC
Edge Equations

- Determining the sign
 - Which side is “in” and which is “out” depends on order of start/end vertices...
 - Convention: specify vertices in counter-clockwise order

- Edge Equations
 - Counter-Clockwise Triangles
 - The equation \(L(x,y) \) as specified above is negative inside, positive outside
 - Flip sign:
 \[
 L(x,y) = -(y_e - y_s)(x - x_s) - (y - y_s)(x_e - x_s) = 0
 \]
 - Clockwise triangles
 - Use original formula
 \[
 L(x,y) = (y_e - y_s)(x - x_s) - (y - y_s)(x_e - x_s) = 0
 \]

Scan Conversion of Polygons

- Implicit formulation works for any convex polygon
 - Doesn’t work for non-convex polygons

- Observation:
 - Straight line intersection with polygon = set of segments

- Alternative: algorithm based on scan-line/edge intersections
 - Works for general polygons
 - Less per pixel computations

Scan Conversion of Polygons

- General Algorithm
 - Intersect each scanline with all edges
 - Sort intersections in \(x \)
 - Calculate parity to determine in/out
 - Fill the ‘in’ pixels

- Efficiency improvement:
 - Exploit row-to-row coherence using “edge table”

Edge Walking

- Next intersection along edge determined from previous

 \[
 \begin{align*}
 y_T & \quad x_L \quad x_R \quad \Delta x_L \\
 y_B & \quad x_L \quad x_R \quad \Delta x_R
 \end{align*}
 \]

Edge Walking

- Special case: Scan-converting a trapezoid
 - Exploit continuous \(L \) and \(R \) edges
 - Predict intersections from one line to next

  ```
  scanTrapezoid(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R) {
  for (y=yB; y<=yT; y++) {
  for (x=xL; x<=xR; x++)
  setPixel(x,y);
  xL += DxL;
  xR += DxR;
  }
  }
  ```
Computer Graphics

Scan Conversion - Polygons

Edge Walking Triangles

- Split triangles into two "trapezoids" with continuous left and right edges

\[
\text{scanTrapezoid}(x_0, x_1, y_0, y_1, \frac{1}{m_0}, \frac{1}{m_1})
\]

\[
\text{scanTrapezoid}(x_2, x_3, y_2, y_3, \frac{1}{m_2}, \frac{1}{m_3})
\]

Issues

- Many applications have small triangles
- Setup cost is non-trivial
- Clipping triangles produces non-triangles
- Can be avoided through re-triangulation

Discussion

- Modern GPUs:
 - Use edge equations
 - Plus plane equations for attribute interpolation
 - No clipping of primitives required
 - Faster with many small triangles

Discussion:

- Exactly which pixels should be lit?
 - Those pixels inside the triangle edge (of course)
 - But what about pixels exactly on the edge?
 - Don't draw them: gaps possible between triangles
 - Draw them: order of triangles matters

Rasterization Issues (Independent of Algorithm)

- Exact which pixels should be lit?
- Those pixels inside the triangle edge (of course)
- But what about pixels exactly on the edge?
- Don't draw them: gaps possible between triangles
- Draw them: order of triangles matters

Old hardware:

- Use edge-walking algorithm
 - Scan-convert edges, then fill in scanlines
 - Compute interpolated values by interpolating along edges, then scanlines
 - Requires clipping of polygons against viewing volume
 - Faster if you have a few, large polygons
 - Possibly faster in software

Triangle Rasterization Issues

- Shared Edge Ordering
- Need a consistent (if arbitrary) rule
 - Example: draw pixels on left or top edge, but not on right or bottom edge

Copyright 2012. Alla Sheffer, UBC
Triangle Rasterization Issues

- Sliver

Shading

Assigning colors inside triangle interior

Triangle Rasterization Issues

- Moving Slivers

Shading

Input to Scan Conversion:
- Vertices of triangles (lines, quadrilaterals...)
- Color (per vertex)
 - Specified with glColor
 - Or: computed with lighting
- World-space normal (per vertex)
 - Left over from lighting stage

Shading Task:
- Determine color of every pixel in the triangle

Triangle Rasterization Issues

- These are ALIASING Problems
 - Problems associated with representing continuous functions (triangles) with finite resolution (pixels)
 - More on this problem when we talk about sampling...

Shading

How can we assign pixel colors using this information?
- Easiest: flat shading
 - Whole triangle gets one color (color of 1st vertex)
- Better: Gouraud shading
 - Linearly interpolate color across triangle
- Even better: Phong shading
 - Linearly interpolate the normal vector
 - Compute lighting for every pixel
 - Note: not supported by rendering pipeline as discussed so far
Flat Shading
- Simplest approach: calculate illumination at one point per polygon (e.g. center)
- Obviously inaccurate for smooth surfaces

Flat Shading Approximations
- If an object really is faceted, is this accurate?
- no!
 - For point sources, direction to light varies across the facet
 - For specular reflectance, direction to eye varies across the facet

Improving Flat Shading
- What if we evaluate Phong lighting model at each pixel of the polygon?
 - Better, but result still clearly faceted
- Gouraud Shading: For smoother-looking surfaces introduce vertex normals at each vertex
 - Usually different from facet normal
 - Used only for shading
 - Think of as a better approximation of the real surface that the polygons approximate

Vertex Normals
- Vertex normals may be
 - Provided with the model
 - Computed from first principles
 - Approximated by averaging the normals of the facets that share the vertex

Gouraud Shading Artifacts
- Often appears dull, chalky
 - Lacks accurate specular component
 - if included, will be averaged over entire polygon

Copyright 2012. Alla Sheffer, UBC
Gouraud Shading Artifacts
- Mach bands
- Eye enhances discontinuity in first derivative
- Very disturbing, especially for highlights

Phong Shading
- linearly interpolating surface normal across the facet, applying Phong lighting model at every pixel
 - Same input as Gouraud shading
 - Pro: much smoother results
 - Con: considerably more expensive

Phong Shading Difficulties
- Computationally expensive
 - Per-pixel vector normalization and lighting computation!
 - Floating point operations required
 - Lighting after perspective projection
 - Messes up the angles between vectors
 - Have to keep eye-space vectors around
 - No direct support in standard rendering pipeline
 - But can be simulated with texture mapping, procedural shading hardware

Phong Shading
- linearily interpolate the vertex normals
 - Compute lighting equations at each pixel
 - Can use specular component

\[
I_{\text{total}} = k_a I_{\text{ambient}} + \sum_{i=1}^{n_{\text{lights}}} I_i (k_d (\mathbf{n} \cdot \mathbf{l}_i) + k_s (\mathbf{v} \cdot \mathbf{r}_i)^s)_{\text{diffuse}}
\]

remember: normals used in diffuse and specular terms

Shading Artifacts: Silhouettes
- Polygonal silhouettes remain

Interpolation - access triangle interior
- Interpolate between vertices:
 - z
 - r,g,b - colour components
 - u,v - texture coordinates
 - \(N_i, N_j, N_k \) - surface normals

Equivalent
- Barycentric coordinates
- Bilinear interpolation
- Plane Interpolation
Barycentric Coordinates

- Area
 \[A = \frac{1}{2} \|P_1P_2 \times P_1P_3\| \]
- Barycentric coordinates
 \[a_1 = \frac{A_{P_1P_2}}{A}, \quad a_2 = \frac{A_{P_2P_3}}{A}, \quad a_3 = \frac{A_{P_3P_1}}{A} \]
 \[P = a_1P_1 + a_2P_2 + a_3P_3 \]

Bi-Linear Interpolation

- Most common approach, and what OpenGL does
- Perform Phong lighting at the vertices
- Linearly interpolate the resulting colors over faces
 - Along edges
 - Along scanlines
- Equivalent to Barycentric Coordinates!

Bi-Linear interpolation

\[P = \frac{c_1}{c_1 + c_2} P_1 + \frac{c_1}{c_1 + c_3} P_3 \]
\[P_2 = \frac{d_1}{d_1 + d_2} P_1 + \frac{d_1}{d_1 + d_3} P_3 \]
\[P_4 = \frac{b_1}{b_1 + b_2} P_1 + \frac{b_1}{b_1 + b_3} P_3 \]

Alternative formula: Bi-Linear Interpolation

- Interpolate quantity along L and R edges
 - (as a function of y)
 - Then interpolate quantity as a function of x

Another Alternative: Plane Equation

- Observation: Values vary linearly in image plane
 - E.g.: \(r = Ax + By + C \)
 - \(r \) = red channel of the color
 - Same for \(g, b, N_x, N_y, N_z, \ldots \)
- From info at vertices we know:
 \[n_1 = Ax_1 + By_1 + C \]
 \[n_2 = Ax_2 + By_2 + C \]
 \[n_3 = Ax_3 + By_3 + C \]
- Solve for \(A, B, C \)
- One-time set-up cost per triangle & interpolated value
Discussion

- Which algorithm (formula) to use when?
 - Bi-linear interpolation
 - Together with trapezoid scan conversion
 - Plane equations
 - Together with implicit (edge equation) scan conversion
 - Barycentric coordinates
 - Too expensive in current context
 - But: method of choice for ray-tracing
 - Whenever you only need to compute the value for a single pixel

Validation

- All formulations should provide same value
- Can verify barycentric properties

\[a_1 + a_2 + a_3 = 1 \]
\[0 \leq a_1, a_2, a_3 \leq 1 \]