Chapter 9

Scan Conversion (part 2)– Drawing Polygons on Raster Display

Rendering Pipeline

Geometry Processing

Geometric Content → Model/View Transform. → Lighting → Perspective Transform. → Clipping

Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer

Rasterization → Fragment Processing
Triangle/Polygon Rasterization

Triangle (convex polygon) = intersection of edge half-spaces

Implicit Formulation

- Triangle (convex polygon) = intersection of edge half-spaces
 - Defined by set of implicit line equations
Using Implicit Edge Equations

Usage:
- Go over each pixel on screen
 - To be efficient restrict to bounding rectangle
- Check if pixel is inside/outside of triangle
 - Use sign of edge equations

Implicit equation of a triangle edge:

\[L(x, y) = (y_e - y_s)(x - x_s) - (x_e - x_s)(y - y_s) = 0 \]

- see Bresenham algorithm
- \(L(x, y) \) positive on one side of edge, negative on the other

What about the sign?
- Which side is in, which is out?
Determining the sign
- Which side is “in” and which is “out” depends on order of start/end vertices...
- Convention: specify vertices in counter-clockwise order

Edge Equations

Counter-Clockwise Triangles
- The equation $L(x,y)$ as specified above is negative inside, positive outside
 - Flip sign:

 $$L(x,y) = -(y_e - y_s)(x - x_e) + (y - y_s)(x_e - x_s) = 0$$

Clockwise triangles
- Use original formula

$$L(x,y) = (y_e - y_s)(x - x_e) - (y - y_s)(x_e - x_s) = 0$$
Scan Conversion of Polygons

- Implicit formulation works for any convex polygon
 - Doesn't work for non-convex polygons
- Observation:
 - Straight line intersection with polygon = set of segments
- Alternative: algorithm based on scan-line/edge intersections
 - Works for general polygons
 - Less per pixel computations

Scan Conversion of Polygons

- General Algorithm
 - Intersect each scanline with all edges
 - Sort intersections in x
 - Calculate parity to determine in/out
 - Fill the ‘in’ pixels
 - Efficiency improvement:
 - Exploit row-to-row coherence using “edge table”
Edge Walking

- Next intersection along edge determined from previous

\[y_T \]
\[y_B \]
\[\Delta x_L \]
\[x_L \]
\[x_R \]
\[\Delta x_R \]

Special case: Scan-converting a trapezoid
- Exploit continuous L and R edges
 - Predict intersections from one line to next

\[
\text{scanTrapezoid}(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R)
\]

for (y=yB; y<=yT; y++) {
 for (x=xL; x<=xR; x++)
 setPixel(x, y);
 xL += DxL;
 xR += DxR;
}

\[y_T \]
\[y_B \]
\[\Delta x_L \]
\[x_L \]
\[x_R \]
\[\Delta x_R \]
Edge Walking Triangles

- Split triangles into two “trapezoids” with continuous left and right edges

\[
\text{scanTrapezoid}(x_1, x_m, y_1, y_3, \frac{1}{m_1}, \frac{1}{m_2})
\]

\[
\text{scanTrapezoid}(x_2, x_2, y_2, y_3, \frac{1}{m_2}, \frac{1}{m_1})
\]

Issues

- Many applications have small triangles
 - Setup cost is non-trivial
- Clipping triangles produces non-triangles
 - Can be avoided through re-triangulation
Discussion

- Old hardware:
 - Use edge-walking algorithm
 - Scan-convert edges, then fill in scanlines
 - Compute interpolated values by interpolating along edges, then scanlines
 - Requires clipping of polygons against viewing volume
 - Faster if you have a few, large polygons
 - Possibly faster in software

Discussion:

- Modern GPUs:
 - Use edge equations
 - Plus plane equations for attribute interpolation
 - No clipping of primitives required
 - Faster with many small triangles
Rasterization Issues (Independent of Algorithm)

- Exactly which pixels should be lit?
 - Those pixels inside the triangle edge (of course)
 - But what about pixels exactly on the edge?
 - Don’t draw them: gaps possible between triangles
 - Draw them: order of triangles matters

Triangle Rasterization Issues

- Shared Edge Ordering

- Need a consistent (if arbitrary) rule
 - Example: draw pixels on left or top edge, but not on right or bottom edge
Triangle Rasterization Issues

- Sliver

Triangle Rasterization Issues

- Moving Slivers
Triangle Rasterization Issues

- These are ALIASING Problems
 - Problems associated with representing continuous functions (triangles) with finite resolution (pixels)
 - More on this problem when we talk about sampling...

Shading

Assigning colors inside triangle interior
Shading

- **Input to Scan Conversion:**
 - Vertices of triangles (lines, quadrilaterals...)
 - Color (per vertex)
 - Specified with glColor
 - Or: computed with lighting
 - World-space normal (per vertex)
 - Left over from lighting stage

- **Shading Task:**
 - Determine color of every pixel in the triangle

Shading

- **How can we assign pixel colors using this information?**
 - Easiest: flat shading
 - Whole triangle gets one color (color of 1st vertex)
 - Better: Gouraud shading
 - Linearly interpolate color across triangle
 - Even better: Phong shading
 - Linearly interpolate the normal vector
 - Compute lighting for every pixel
 - Note: not supported by rendering pipeline as discussed so far
Flat Shading

- Simplest approach: calculate illumination at one point per polygon (e.g. center)

- Obviously inaccurate for smooth surfaces

Flat Shading Approximations

- If an object really is faceted, is this accurate?
Flat Shading Approximations

- If an object really is faceted, is this accurate?
 - no!
 - For point sources, direction to light varies across the facet
 - For specular reflectance, direction to eye varies across the facet

Improving Flat Shading

- What if we evaluate Phong lighting model at each pixel of the polygon?
 - Better, but result still clearly faceted
- Gouraud Shading: For smoother-looking surfaces introduce vertex normals at each vertex
 - Usually different from facet normal
 - Used only for shading
 - Think of as a better approximation of the real surface that the polygons approximate
Vertex Normals

- Vertex normals may be
 - Provided with the model
 - Computed from first principles
 - Approximated by averaging the normals of the facets that share the vertex

Gouraud Shading Artifacts

- Often appears dull, chalky
- Lacks accurate specular component
 - if included, will be averaged over entire polygon
Gouraud Shading Artifacts

- Mach bands
 - Eye enhances discontinuity in first derivative
 - Very disturbing, especially for highlights

Phong Shading

- linearly interpolating surface normal across the facet, applying Phong lighting model at every pixel
 - Same input as Gouraud shading
 - Pro: much smoother results
 - Con: considerably more expensive

- Not the same as Phong lighting
 - Common confusion
 - Phong lighting: empirical model to calculate illumination at a point on a surface
Phong Shading

- Linearly interpolate the vertex normals
- Compute lighting equations at each pixel
- Can use specular component

\[I_{total} = k_a I_{ambient} + \sum_{i=1}^{\#lights} I_i \left(k_d (n \cdot l_i) + k_s (v \cdot r_i)^{n_{shiny}} \right) \]

remember: normals used in diffuse and specular terms

discontinuity in normal's rate of change harder to detect

Phong Shading Difficulties

- Computationally expensive
 - Per-pixel vector normalization and lighting computation!
 - Floating point operations required
- Lighting after perspective projection
 - Messes up the angles between vectors
 - Have to keep eye-space vectors around
- No direct support in standard rendering pipeline
 - But can be simulated with texture mapping, procedural shading hardware
Shading Artifacts: Silhouettes

- Polygonal silhouettes remain

Gouraud
- Interpolate between vertices:
 - \(z \)
 - \(r,g,b \) - colour components
 - \(u,v \) - texture coordinates
 - \(N_x, N_y, N_z \) - surface normals
- Equivalent
 - Barycentric coordinates
 - Bilinear interpolation
 - Plane Interpolation

Phong
Barycentric Coordinates

- Area
 \[A = \frac{1}{2} \left\| \mathbf{P}_1 \mathbf{P}_2 \times \mathbf{P}_1 \mathbf{P}_3 \right\| \]

- Barycentric coordinates
 \[a_1 = \frac{A_{P_2 P_3 P}}{A}, \quad a_2 = \frac{A_{P_3 P_1 P}}{A}, \quad a_3 = \frac{A_{P_1 P_2 P}}{A}, \]
 \[P = a_1 \mathbf{P}_1 + a_2 \mathbf{P}_2 + a_3 \mathbf{P}_3 \]

Barycentric Coordinates

- weighted combination of vertices
 \[P = a_1 \cdot \mathbf{P}_1 + a_2 \cdot \mathbf{P}_2 + a_3 \cdot \mathbf{P}_3 \]
 \[a_1 + a_2 + a_3 = 1 \]
 \[0 \leq a_1, a_2, a_3 \leq 1 \]
Alternative formula: Bi-Linear Interpolation

- Interpolate quantity along L and R edges
 - (as a function of y)
 - Then interpolate quantity as a function of x

Bi-Linear Interpolation

- Most common approach, and what OpenGL does
 - Perform Phong lighting at the vertices
 - Linearly interpolate the resulting colors over faces
 - Along edges
 - Along scanlines
- Equivalent to Barycentric Coordinates!
Bi-Linear interpolation

- **Formulation**

\[
P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R
\]

\[
P_L = \frac{d_2}{d_1 + d_2} \cdot P_2 + \frac{d_1}{d_1 + d_2} \cdot P_3
\]

\[
P_R = \frac{b_2}{b_1 + b_2} \cdot P_2 + \frac{b_1}{b_1 + b_2} \cdot P_1
\]

Another Alternative: Plane Equation

- **Observation:** Values vary linearly in image plane
- **E.g.:** \(r = Ax + By + C \)
 - \(r \) = red channel of the color
 - Same for \(g, b, Nx, Ny, Nz, z \)...
- From info at vertices we know:
 \[
r_1 = Ax_1 + By_1 + C
\]
 \[
r_2 = Ax_2 + By_2 + C
\]
 \[
r_3 = Ax_3 + By_3 + C
\]
- Solve for \(A, B, C \)
- One-time set-up cost per triangle & interpolated value
Discussion

- Which algorithm (formula) to use when?
 - Bi-linear interpolation
 - Together with trapezoid scan conversion
 - Plane equations
 - Together with implicit (edge equation) scan conversion
 - Barycentric coordinates
 - Too expensive in current context
 - But: method of choice for ray-tracing
 - Whenever you only need to compute the value for a single pixel

Validation

- All formulations should provide same value
- Can verify barycentric properties

\[
 a_1 + a_2 + a_3 = 1 \\
 0 \leq a_1, a_2, a_3 \leq 1
\]