Chapter 12
Texture Mapping

Texture Mapping
- Introduced to increase realism
 - Lighting/shading models not enough
- Hide geometric simplicity
 - Images convey illusion of geometry
 - Map a brick wall texture on a flat polygon
 - Create bumpy effect on surface
- Associate 2D information with 3D surface
 - Point on surface corresponds to a point in texture
 - “Paint” image onto polygon

Rendering Pipeline

Color Texture Mapping
- Define color (RGB) for each point on object surface
- Two approaches
 - Surface texture map
 - Volumetric texture

Texture Mapping
- Real life objects non uniform in terms of color & normal
- To generate realistic objects - reproduce coloring & normal variations = Texture
- Can often replace complex geometric details

Surface texture
- Define texture pattern over (u,v) domain (Image)
 - Image - 2D array of “texels”
- Assign (u,v) coordinates to each point on object surface
 - How: depends on surface type
- For polygons (triangle)
 - Inside - use barycentric coordinates
 - For vertices need mapping function (artist/programmer)
Texture Mapping

Texture Mapping Example

Texture Coordinates
- Every polygon has object coordinates and texture coordinates
 - Object coordinates describe where polygon vertices are on the screen
 - Texture coordinates describe texel coordinates of each vertex
 - Texture coordinates are interpolated across triangle (like R,G,B,Z)
 - (well, not quite...)
 - glTexCoord2f(TYPE coords)
 - Other versions for different texture dimensions

Texture Lookup: Tiling and Clamping
- What if s or t is outside the interval [0...1]?
- Multiple choices
 - Use fractional part of texture coordinates
 - Cyclic repetition of texture to tile whole surface
 - glTexParameteri(..., GL_TEXTURE_WRAP_S, GL_REPEAT, GL_TEXTURE_WRAP_T, GL_REPEAT, ...)
 - Clamp every component to range [0...1]
 - Re-use color values from texture image border
 - glTexParameteri(..., GL_TEXTURE_WRAP_S, GL_CLAMP, GL_TEXTURE_WRAP_T, GL_CLAMP, ...)
Tiled Texture Map

Interpolation: Screen vs. World Space

OpenGL Details

Texture Mapping

Texture Coordinate Interpolation

Perspective - Reminder

Copyright: Alla Sheffer, UBC, 2012
Texture: Sampling & Reconstruction

How to deal with:
- pixels that are much larger than texels? (apply filtering, "averaging")
- pixels that are much smaller than texels? (interpolate)

Reconstruction

Magnification: Interpolating Textures

- Nearest neighbor
- Bilinear
- Hermite (cubic)

Related: Upsampling pixel images

MIP-mapping

Use "image pyramid" to precompute averaged versions of the texture

Without MIP-mapping

With MIP-mapping

Copyright: Alla Sheffer, UBC, 2012
MIPmap storage

- Only 1/3 more space required

Texture Parameters

- In addition to color can control other material/object properties
 - Reflectance (either diffuse or specular)
 - Surface normal (bump mapping)
 - Transparency
 - Reflected color (environment mapping)

Bump Mapping: Normals As Texture

- Object surface often not smooth – to recreate correctly need complex geometry model
- Can control shape “effect” by locally perturbing surface normal
 - Random
 - Directional

Bump Mapping

- Original surface $O(u)$
- Bump map $B(u)$
- Surface normal $N'(u)$
- Lengthening or shortening $O(u)$ using $B(u)$

Displacement Mapping

- Bump mapping gets silhouettes wrong
 - Shadows wrong too
 - Change surface geometry instead
 - Need to subdivide surface
- GPU support
 - Bump and displacement mapping not directly supported: require per-pixel lighting
 - Modern GPUs allow for programming both yourself
Environment Mapping
- cheap way to achieve reflective effect
- generate image of surrounding
- map to object as texture

Cube Mapping

Environment Mapping
- used to model object that reflects surrounding textures to the eye
 - movie example: cyborg in Terminator 2
- different approaches
 - sphere, cube most popular
 - OpenGL support
 - GL_SPHERE_MAP, GL_CUBE_MAP
 - others possible too

Cube Mapping
- 6 planar textures, sides of cube
 - point camera in 6 different directions, facing out from origin

Sphere Mapping
- texture is distorted fish-eye view
 - point camera at mirrored sphere
 - spherical texture mapping creates texture coordinates that correctly index into this texture map

Volumetric Texture
- Define texture pattern over 3D domain - 3D space containing the object
 - Texture function can be digitized or procedural
 - For each point on object compute texture from point location in space
 - Common for natural material/irregular textures (stone, wood, etc...)