Chapter 11

Ray-Tracing

Global Illumination Models

- Basic shading (rendering pipeline) = local illumination model
 - No object interaction
- Global illumination models require more sophisticated, computation-intensive algorithms
 - Ray Tracing
 - Global Illumination
- Ray-tracing
 - Usually offline (e.g. movies etc.)
 - Research on making real-time
 - Flexible - can incorporate lots of phenomena

Ray-Tracing Algorithm

```plaintext
RayTrace(Scene)
obj := FirstIntersection(Scene)
if (no obj) return BackgroundColor;
else begin
  if (Reflect(obj)) then
    reflect_color := RayTrace(ReflectRay(obj));
  else
    reflect_color := Black;
  if (Transparent(obj)) then
    refract_color := RayTrace(RefractionRay(obj));
  else
    refract_color := Black;
  return Shade(reflect_color, refract_color, obj);
end;
```

Reflection

- Mirror effects
 - Perfect specular reflection

Snell's Law

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

Refraction

- Interface between transparent object and surrounding medium
 - E.g. glass/air boundary
 - Light ray breaks (changes direction) based on refractive indices \(c_1, c_2 \)
Computer Graphics

Ray Tracing

Sub-Routines

- ReflectRay(r, obj) - computes reflected ray (use obj normal at intersection)
- RefractRay(r, obj) - computes refracted ray
 - Note: ray is inside obj
- Shade(reflect_color, refract_color, obj) - compute illumination given three components

More About Ray-Tracing

- Algorithm above has a BUG....
- Does not terminate
- Termination Criteria
 - No intersection
 - Contribution of secondary ray attenuated below threshold - each reflection/refraction attenuates ray
 - Maximal depth is reached

Simulating Shadows

- Trace ray from each ray-object intersection point to light sources
 - If the ray intersects an object in between ⇒ point is shadowed from the light source

```plaintext
shadow = RayTrace(LightRay(obj, r, light));
return Shade(shadow, reflect_color, refract_color, obj);
```

Ray-Tracing: Practicalities

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

Ray-Tracing: Generation of Rays

- Camera Coordinate System
 - Origin: C (camera position)
 - Viewing direction: v
 - Up vector: u
 - x direction: x = v x u
- Note:
 - Corresponds to viewing transformation in rendering pipeline!
 - See gluLookAt...
Ray-Tracing: Generation of Rays

Other parameters:
- Distance to image plane: d
- Image resolution (in pixels): w, h
- Left, right, top, bottom boundaries in image plane: l, r, t, b

Then:
- Lower left corner of image: $O = C + d \cdot v + l \cdot x + b \cdot u$
- Pixel at position i, j ($i=0..w-1, j=0..h-1$):

$$P_{i,j} = O + i \cdot \frac{r-l}{w-1} \cdot x - j \cdot \frac{t-b}{h-1} \cdot u$$

Ray-Object Intersections

Kernel of ray-tracing \Rightarrow must be extremely efficient
- Usually involves solving a set of equations
 - Using implicit formulas for primitives

Example: Ray-Sphere intersection

Ray: $v(t) = p_0 + v_0 t$, $v(t) = p_1 + v_1 t$, $v(0) = p_0 + v_0$, $v(1) = p_1 + v_1$

(1-unit) sphere: $x^2 + y^2 + z^2 = 1$

Quadratic equation in t:

$$0 = (p_0 + v_0 t)^2 + (p_1 + v_1 t)^2 - 1$$

Ray Intersections

Other Primitives:
- Implicit functions:
 - Spheres at arbitrary positions
 - Same thing
 - Conic sections (hyperboloids, ellipsoids, paraboloids, cones, cylinders)
 - Same thing (all are quadratic functions!) (2D test)
 - Higher order functions (e.g. tori and other quartic functions)
 - In principle the same
 - But root-finding difficult
 - Net to resolve to numerical methods

Other Primitives (cont)
- Polygons:
 - First intersect ray with plane
 - Linear implicit function
 - Then test whether point is inside or outside of polygon (2D test)
 - For convex polygons
 - Suffices to test whether point in on the right side of every boundary edge
 - Similar to computation of outcodes in line clipping

Ray Intersections

Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

Ray Intersections

Other parameters:
- Distance to image plane: d
- Image resolution (in pixels): w, h
- Left, right, top, bottom boundaries in image plane: l, r, t, b

Then:
- Lower left corner of image: $O = C + d \cdot v + l \cdot x + b \cdot u$
- Pixel at position i, j ($i=0..w-1, j=0..h-1$):

$$P_{i,j} = O + i \cdot \frac{r-l}{w-1} \cdot x - j \cdot \frac{t-b}{h-1} \cdot u$$
Ray-Tracing: Practicalities
- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

Ray-Tracing: Transforms
- Ray Transformation:
 - For intersection test, it is only important that ray is in same coordinate system as object representation
 - Transform all rays into object coordinates
 - Transform camera point and ray direction by inverse of model/view matrix
 - Shading has to be done in world coordinates (where light sources are given)
 - Transform object space intersection point to world coordinates
 - Thus have to keep both world and object-space ray transforms

Ray-Tracing: Transformations
- Note: rays replace perspective transformation
- Geometric Transformations:
 - Similar goal as in rendering pipeline:
 - Modeling scenes convenient using different coordinate systems for individual objects
 - Problem:
 - Not all object representations are easy to transform
 - This problem is fixed in rendering pipeline by restriction to polygons (affine invariance!)
- Geometric Transformations:
 - Similar goal as in rendering pipeline:
 - Modeling scenes convenient using different coordinate systems for individual objects
 - Problem:
 - Not all object representations are easy to transform
 - This problem is fixed in rendering pipeline by restriction to polygons (affine invariance!)
 - Ray-Tracing has different solution:
 - The ray itself is always affine invariant!
 - Thus: transform ray into object coordinates!

Ray-Tracing: Local Lighting
- Light sources:
 - For the moment: point and directional lights
 - Later: area lights
 - More complex lights are possible
 - Area lights
 - Global illumination
 - Other objects in the scene reflect light
 - Everything is a light source!
 - Talk about this on Monday
Ray-Tracing: Local Lighting

- Local surface information (normal...)
 - For implicit surfaces \(F(x,y,z) = 0 \): normal \(\mathbf{n}(x,y,z) \) can be easily computed at every intersection point using the gradient
 \[
 \mathbf{n}(x,y,z) = \begin{pmatrix}
 \frac{\partial F(x,y,z)}{\partial x} \\
 \frac{\partial F(x,y,z)}{\partial y} \\
 \frac{\partial F(x,y,z)}{\partial z}
 \end{pmatrix}
 \]
 - Example:
 \[
 F(x,y,z) = x^2 + y^2 + z^2 - r^2
 \]
 \[
 \mathbf{n}(x,y,z) = \begin{pmatrix}
 2x \\
 2y \\
 2z
 \end{pmatrix}
 \]
 Needs to be normalized!

Ray-Tracing: Local Lighting

- Local surface information
 - Alternatively: can interpolate per-vertex information for triangles/meshes as in rendering pipeline
 - Phong shading!
 - Same as discussed for rendering pipeline
 - Difference to rendering pipeline:
 - Interpolation cannot be done incrementally
 - Have to compute Barycentric coordinates for every intersection point (e.g. plane equation for triangles)

Ray-Tracing: Practicalities

- Generation of rays
- Intersection of rays with geometric primitives
 - **Geometric transformations**
- Lighting and shading
- **Speed**: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

Optimized Ray-Tracing

- Basic algorithm simple but VERY expensive
- Optimize...
 - Reduce number of rays traced
 - Reduce number of ray-object intersection calculations
- Methods
 - Bounding Boxes
 - Spatial Subdivision
 - Visibility & Intersection
 - Tree Pruning

Ray Tracing

- Data Structures
 - Goal: reduce number of intersection tests per ray
 - Lots of different approaches:
 - (Hierarchical) bounding volumes
 - Hierarchical space subdivision
 - Octree, k-D tree, BSP tree

Bounding Volumes

- Idea:
 - Rather than test every ray against a potentially very complex object (e.g. triangle mesh), do a quick **conservative** test first which eliminates most rays
 - Surround complex object by simple, easy to test geometry (typically sphere or axis-aligned box)
 - Reduce false positives: make bounding volume as tight as possible!
Hierarchical Bounding Volumes
- Extension of previous idea:
 - Use bounding volumes for groups of objects

Creating a Regular Grid
- Steps:
 - Find bounding box of scene
 - Choose grid resolution in x, y, z
 - Insert objects
 - Objects that overlap multiple cells get referenced by all cells they overlap

Spatial Subdivision Data Structures
- Bounding Volumes:
 - Find simple object completely enclosing complicated objects
 - Boxes, spheres
 - Hierarchically combine into larger bounding volumes
 - Spatial subdivision data structure:
 - Partition the whole space into cells
 - Grids, octrees, (BSP trees)
 - Simplifies and accelerates traversal
 - Performance less dependent on order in which objects are inserted

Grid Traversal
- Start at ray origin
- While no intersection found
 - Go to next grid cell along ray
 - Compute intersection of ray with all objects in the cell
 - Determine closest such intersection
 - Check if intersection is inside the cell
 - If so, terminate search

Regular Grid
- Subdivide space into rectangular grid:
 - Associate every object with the cell(s) that it overlaps with
 - Find intersection: traverse grid

Traversal
- Note:
 - This algorithm calls for computing the intersection points multiple times (once per grid cell)
 - In practice: store intersections for a (ray, object) pair once computed, reuse for future cells
Computer Graphics

Regular Grid Discussion
- Advantages?
 - Easy to construct
 - Easy to traverse
- Disadvantages?
 - May be only sparsely filled
 - Geometry may still be clumped

Adaptive Grids
- Subdivide until each cell contains no more than \(n \) elements, or maximum depth \(d \) is reached

Area Light Sources
- Area lights produce soft shadows:
 - In 2D:

 ![Diagram of Area Light Sources]

 - Area light
 - Occluding surface
 - Umbra (core shadow)
 - Penumbra (partial shadow)
 - Receiving surface

Soft Shadows: Area Light Sources
- So far:
 - All lights were either point-shaped or directional
 - Both for ray-tracing and the rendering pipeline
 - Thus, at every point, we only need to compute lighting formula and shadowing for **ONE** direction per light
- In reality:
 - All lights have a finite area
 - Instead of just dealing with one direction, we now have to **integrate** over all directions that go to the light source

Area Light Sources
- Point lights:
 - Only one light direction:

 \[
 I_{\text{reflected}} = \rho \cdot V \cdot I_{\text{light}}
 \]

 - \(V \) is visibility of light (0 or 1)
 - \(\rho \) is lighting model (e.g. diffuse or Phong)

Are Light Sources
- Area Lights:
 - Infinitely many light rays
 - Need to integrate over all of them:

 \[
 I_{\text{reflected}} = \int_{\text{domega}} \rho(\omega) \cdot V(\omega) \cdot I_{\text{light}}(\omega) \cdot d\omega
 \]

 - Lighting model visibility and light intensity can now be different for every ray!

Copyright 2011, Alla Sheffer, UBC
Rewrite the integration

- Instead of integrating over directions
 \[I_{\text{reflected}} = \int \rho(\omega) \cdot V(\omega) \cdot I_{\text{light}}(\omega) \cdot d\omega \]

 integrate over points on the light source
 \[I_{\text{reflected}}(q) = \int \frac{\rho(p-q) \cdot V(p-q)}{|p-q|^2} \cdot I_{\text{light}}(p) \cdot ds \cdot dt \]

 where: \(q \) point on reflecting surface & \(p = F(s,t) \) point on the area light

 - We are integrating over \(p \)
 - Denominator: quadratic falloff!

Problem:

- Except for the simplest of scenes, either integral is **not solvable analytically**!
- This is mostly due to the visibility term, which could be arbitrarily complex depending on the scene

So:

- Use numerical integration

 - Effectively: approximate the light with a whole number of point lights

Regular grid of point lights

- Problem:
 - will see 4 hard shadows rather than as soft shadow
 - Need LOTS of points to avoid this problem

Formally:

 \[I_{\text{reflected}}(q) = \int \frac{\rho(p-q) \cdot V(p-q)}{|p-q|^2} \cdot I_{\text{light}}(p) \cdot ds \cdot dt \]

 where:
 - The \(p_i \) are randomly chosen on the light source
 - With equal probability!
 - \(A \) is the total area of the light
 - \(N \) is the number of samples (rays)
Sampling

- Sample directions vs. sample light source
- Most directions do not correspond to points on the light source
- Thus, variance will be higher than sampling light directly

Monte Carlo Integration

- Note:
 - This approach of approximating lighting integrals with sums over randomly chosen points is much more flexible than this!
 - In particular, it can be used for global illumination
 - Light bouncing off multiple surfaces before hitting the eye