Chapter 11

Ray-Tracing

Global Illumination Models

- Basic shading (rendering pipeline) = local illumination model
 - No object interaction
- Global illumination models require more sophisticated, computation-intensive algorithms
 - Ray Tracing
 - Global Illumination
- Ray-tracing
 - Usually offline (e.g. movies etc.)
 - research on making real-time
 - Flexible - can incorporate lots of phenomena
Ray-Tracing Algorithm

- Eye
- Image Plane
- Light Source
- Reflected Ray
- Shadow Rays
- Refracted Ray

Reflection
- Mirror effects
- Perfect specular reflection

\[\theta = \theta \]
Refraction

- Interface between transparent object and surrounding medium
 - E.g. glass/air boundary

\[c_2 \sin \theta_1 = c_1 \sin \theta_2 \]

Snell’s Law

- Light ray breaks (changes direction) based on refractive indices \(c_1, c_2 \)

Basic Ray-Tracking Algorithm

```plaintext
RayTrace(r, scene)  
obj := FirstIntersection(r, scene)  
if (no obj)  return BackgroundColor;  
else begin  
  if ( Reflect(obj) ) then  
    reflect_color := RayTrace(ReflectRay(r, obj));  
  else  
    reflect_color := Black;  
  if ( Transparent(obj) ) then  
    refract_color := RayTrace(RefractRay(r, obj));  
  else  
    refract_color := Black;  
  return Shade(reflect_color, refract_color, obj);  
end;
```
Sub-Routines

- ReflectRay(r, obj) - computes reflected ray (use obj normal at intersection)
- RefractRay(r, obj) - computes refracted ray
 - Note: ray is inside obj
- Shade(reflect_color, refract_color, obj) - compute illumination given three components

More About Ray-Tracing

- Algorithm above has a BUG....
- Does not terminate
- Termination Criteria
 - No intersection
 - Contribution of secondary ray attenuated below threshold - each reflection/refraction attenuates ray
 - Maximal depth is reached
Simulating Shadows

- Trace ray from each ray-object intersection point to light sources
 - If the ray intersects an object in between ⇒ point is shadowed from the light source

\[
\text{shadow} = \text{RayTrace}(\text{LightRay}(\text{obj}, r, \text{light}));
\]

\[
\text{return Shade}\left(\text{shadow, reflect_color, refract_color, obj}\right);
\]
Ray-Tracing: Practicalities

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

Ray-Tracing: Generation of Rays

- Camera Coordinate System
 - Origin: C (camera position)
 - Viewing direction: \(\mathbf{v} \)
 - Up vector: \(\mathbf{u} \)
 - \(x \) direction: \(\mathbf{x} = \mathbf{v} \times \mathbf{u} \)
- Note:
 - Corresponds to viewing transformation in rendering pipeline!
 - See gluLookAt...
Other parameters:
- Distance to image plane: \(d \)
- Image resolution (in pixels): \(w, h \)
- Left, right, top, bottom boundaries in image plane: \(l, r, t, b \)

Then:
- Lower left corner of image: \(O = C + d \cdot v + l \cdot x + b \cdot u \)
- Pixel at position \(i, j \) (\(i=0..w-1, j=0..h-1 \)):

\[
P_{i,j} = O + i \cdot \frac{r-l}{w-1} \cdot x - j \cdot \frac{t-b}{h-1} \cdot u
\]

\[
= O + i \cdot \Delta x \cdot x - j \cdot \Delta y \cdot y
\]

Ray in 3D Space:

\[
R_{i,j}(t) = C + t \cdot (P_{i,j} - C) = C + t \cdot v_{i,j}
\]

where \(t = 0...\infty \)
Ray-Tracing: Practicalities

- Generation of rays
- **Intersection of rays with geometric primitives**
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

Ray-Object Intersections

- Kernel of ray-tracing \(\Rightarrow\) must be extremely efficient
- Usually involves solving a set of equations
 - Using implicit formulas for primitives

Example: Ray-Sphere intersection

Ray: \(x(t) = p_x + v_x t, \ y(t) = p_y + v_y t, \ z(t) = p_z + v_z t\)

(Unit) sphere: \(x^2 + y^2 + z^2 = 1\)

Quadratic equation in \(t\):
\[
0 = (p_x + v_x t)^2 + (p_y + v_y t)^2 + (p_z + v_z t)^2 - 1
\]

\[
= t^2(v_x^2 + v_y^2 + v_z^2) + 2t(p_x v_x + p_y v_y + p_z v_z) + (p_x^2 + p_y^2 + p_z^2) - 1
\]
Ray Intersections

Other Primitives:

Implicit functions:

- Spheres at arbitrary positions
 - Same thing
- Conic sections (hyperboloids, ellipsoids, paraboloids, cones, cylinders)
 - Same thing (all are quadratic functions!)
- Higher order functions (e.g. tori and other quartic functions)
 - In principle the same
 - But root-finding difficult
 - Net to resolve to numerical methods

Other Primitives (cont)

Polygons:

- First intersect ray with plane
 - linear implicit function
- Then test whether point is inside or outside of polygon (2D test)
- For convex polygons
 - Suffices to test whether point in on the right side of every boundary edge
 - Similar to computation of outcodes in line clipping
Ray-Tracing: Practicalities

- Generation of rays
- Intersection of rays with geometric primitives
 - Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

Ray-Tracing: Transformations

- Note: rays replace perspective transformation
- Geometric Transformations:
 - Similar goal as in rendering pipeline:
 - Modeling scenes convenient using different coordinate systems for individual objects
 - Problem:
 - Not all object representations are easy to transform
 - This problem is fixed in rendering pipeline by restriction to polygons (affine invariance!)
Ray-Tracing: Transformations

- Geometric Transformations:
 - Similar goal as in rendering pipeline:
 - Modeling scenes convenient using different coordinate systems for individual objects
 - Problem:
 - Not all object representations are easy to transform
 - This problem is fixed in rendering pipeline by restriction to polygons (affine invariance!)
 - Ray-Tracing has different solution:
 - The ray itself is always affine invariant!
 - Thus: transform ray into object coordinates!

Ray Transforms: Transformations

- Ray Transformation:
 - For intersection test, it is only important that ray is in same coordinate system as object representation
 - Transform all rays into object coordinates
 - Transform camera point and ray direction by inverse of model/view matrix
 - Shading has to be done in world coordinates (where light sources are given)
 - Transform object space intersection point to world coordinates
 - Thus have to keep both world and object-space ray
Ray-Tracing: Practicalities

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- **Lighting and shading**
- Speed: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

Ray-Tracing: Local Lighting

- Light sources:
 - For the moment: point and directional lights
 - Later: are light sources
 - More complex lights are possible
 - Area lights
 - Global illumination
 - Other objects in the scene reflect light
 - Everything is a light source!
 - Talk about this on Monday
Ray-Tracing: Local Lighting

- Local surface information (normal...)
 - For implicit surfaces $F(x,y,z)=0$: normal $\mathbf{n}(x,y,z)$ can be easily computed at every intersection point using the gradient
 $$\mathbf{n}(x,y,z) = \begin{pmatrix}
\frac{\partial F(x,y,z)}{\partial x} \\
\frac{\partial F(x,y,z)}{\partial y} \\
\frac{\partial F(x,y,z)}{\partial z}
\end{pmatrix}$$
 - Example:
 $$F(x,y,z) = x^2 + y^2 + z^2 - r^2$$
 $$\mathbf{n}(x,y,z) = \begin{pmatrix}
2x \\
2y \\
2z
\end{pmatrix}$$
 Needs to be normalized!

Ray-Tracing: Local Lighting

- Local surface information
 - Alternatively: can interpolate per-vertex information for triangles/meshes as in rendering pipeline
 - Phong shading!
 - Same as discussed for rendering pipeline
 - Difference to rendering pipeline:
 - Interpolation cannot be done incrementally
 - Have to compute Barycentric coordinates for every intersection point (e.g. plane equation for triangles)
Ray-Tracing: Practicalities

- Generation of rays
- Intersection of rays with geometric primitives
- **Geometric transformations**
- Lighting and shading
- **Speed:** Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

Optimized Ray-Tracing

- Basic algorithm simple but VERY expensive
- Optimize...
 - Reduce number of rays traced
 - Reduce number of ray-object intersection calculations
- Methods
 - Bounding Boxes
 - Spatial Subdivision
 - Visibility & Intersection
 - Tree Pruning
Ray Tracing

- Data Structures
 - Goal: reduce number of intersection tests per ray
 - Lots of different approaches:
 - (Hierarchical) bounding volumes
 - Hierarchical space subdivision
 - Octree, k-D tree, BSP tree

Bounding Volumes

- Idea:
 - Rather than test every ray against a potentially very complex object (e.g. triangle mesh), do a quick conservative test first which eliminates most rays
 - Surround complex object by simple, easy to test geometry (typically sphere or axis-aligned box)
 - Reduce false positives: make bounding volume as tight as possible!
Hierarchical Bounding Volumes

- Extension of previous idea:
 - Use bounding volumes for groups of objects

Spatial Subdivision Data Structures

- Bounding Volumes:
 - Find simple object completely enclosing complicated objects
 - Boxes, spheres
 - Hierarchically combine into larger bounding volumes
 - Spatial subdivision data structure:
 - Partition the whole space into cells
 - Grids, octrees, (BSP trees)
 - Simplifies and accelerates traversal
 - Performance less dependent on order in which objects are inserted
Subdivide space into rectangular grid:

- Associate every object with the cell(s) that it overlaps with
- Find intersection: traverse grid

Creating a Regular Grid

Steps:
- Find bounding box of scene
- Choose grid resolution in x, y, z
- Insert objects
- Objects that overlap multiple cells get referenced by all cells they overlap
Grid Traversal

- Start at ray origin
- While no intersection found
 - Go to next grid cell along ray
 - Compute intersection of ray with all objects in the cell
 - Determine closest such intersection
 - Check if intersection is inside the cell
 - If so, terminate search

Note:

- This algorithm calls for computing the intersection points multiple times (once per grid cell)
- In practice: store intersections for a (ray, object) pair once computed, reuse for future cells
Regular Grid Discussion

- Advantages?
 - Easy to construct
 - Easy to traverse

- Disadvantages?
 - May be only sparsely filled
 - Geometry may still be clumped

Adaptive Grids

- Subdivide until each cell contains no more than n elements, or maximum depth d is reached

This slide is courtesy of Fredo Durand at MIT
So far:
- All lights were either point-shaped or directional
 - Both for ray-tracing and the rendering pipeline
 - Thus, at every point, we only need to compute lighting formula and shadowing for **ONE** direction per light
- In reality:
 - All lights have a finite area
 - Instead of just dealing with one direction, we now have to **integrate** over all directions that go to the light source

Area light sources produce soft shadows:
- In 2D:
Area Light Sources

- Point lights:
 - Only one light direction:

\[I_{\text{reflected}} = \rho \cdot V \cdot I_{\text{light}} \]

- \(V \) is visibility of light (0 or 1)

- \(\rho \) is lighting model (e.g. diffuse or Phong)

Area Light Sources

- Area Lights:
 - Infinitely many light rays
 - Need to integrate over all of them:

\[I_{\text{reflected}} = \int_{\text{light directions}} \rho(\omega) \cdot V(\omega) \cdot I_{\text{light}}(\omega) \cdot d\omega \]

- Lighting model visibility and light intensity can now be different for every ray!
Integrating over Light Source

- Rewrite the integration
 - Instead of integrating over directions
 \[
 I_{\text{reflected}} = \int_{\text{light directions}} \rho(\omega) \cdot V(\omega) \cdot I_{\text{light}}(\omega) \cdot d\omega
 \]
 integrate over points on the light source
 \[
 I_{\text{reflected}}(q) = \int_{s,t} \frac{\rho(p-q) \cdot V(p-q)}{|p-q|^2} \cdot I_{\text{light}}(p) \cdot ds \cdot dt
 \]
 where: \(q \) point on reflecting surface & \(p = F(s,t) \) point on the area light
 - We are integrating over \(p \)
 - Denominator: quadratic falloff!

Integration

- Problem:
 - Except for the simplest of scenes, either integral is not solvable analytically!
 - This is mostly due to the visibility term, which could be arbitrarily complex depending on the scene
- So:
 - Use numerical integration
 - Effectively: approximate the light with a whole number of point lights
Numerical Integration

- Regular grid of point lights
 - Problem: will see 4 hard shadows rather than as soft shadow
 - Need LOTS of points to avoid this problem

Monte Carlo Integration

- Better:
 - Randomly choose the points
 - Use different points on light for computing the lighting in different points on reflecting surface
 - This produces random noise
 - Visually preferable to structured artifacts
Monte Carlo Integration

Formally:
- Approximate integral with finite sum

\[I_{\text{reflected}}(q) = \int_{s,t} \frac{\rho(p-q) \cdot V(p-q)}{|p-q|^2} \cdot I_{\text{light}}(p) \cdot ds \cdot dt \]

\[\approx \frac{A}{N} \sum_{i=1}^{N} \frac{\rho(p_i-q) \cdot V(p_i-q)}{|p_i-q|^2} \cdot I_{\text{light}}(p_i) \]

where
- The \(p_i \) are randomly chosen on the light source
 - With equal probability!
- \(A \) is the total area of the light
- \(N \) is the number of samples (rays)
Sampling

- Sample directions vs. sample light source
 - Most directions do not correspond to points on the light source
 - Thus, variance will be higher than sampling light directly

Monte Carlo Integration

- Note:
 - This approach of approximating lighting integrals with sums over randomly chosen points is much more flexible than this!
 - In particular, it can be used for global illumination
 - Light bouncing off multiple surfaces before hitting the eye