
CS 314: Barycentric Coordinates, 2D Transformations

Robert Bridson

September 9, 2008

1 Barycentric Coordinates

In the last installment we determined how to rasterize a triangle by reducing it to a point-in-triangle test

based on special edge functions which implicitly define the lines containing the edges of the triangle. If

the vertices of the triangle are at (x0, y0), (x1, y1), and (x2, y2), and the point to be tested is (x, y), the three

functions to evaluate are:

F01(x, y) = (x1 − x0)(y − y0)− (x− x0)(y1 − y0)

F12(x, y) = (x2 − x1)(y − y1)− (x− x1)(y2 − y1)

F20(x, y) = (x0 − x2)(y − y2)− (x− x2)(y0 − y2)

If they all have the same sign, the point is inside. Remember that these functions were derived from the

area of a triangle using the vertices of an edge and the point (x, y).

We now will use these evaluations to define the barycentric coordinates of the point (x, y) with

respect to the triangle. The first fact to observe is that the sum of the edge functions is a constant:

F01(x, y) + F12(x, y) + F20(x, y) = S ≡ constant

This is easy to verify just by expanding out the expressions: you should also be able to see it geometrically,

at least when (x, y) is inside the triangle, since up to signs the edge functions are measuring twice the areas

of three triangles that can be combined to form the original triangle, independent of (x, y). This quantity

S is, up to sign, twice the area of the original triangle.

It’s also easy to both verify from the formulas, and see geometrically, that

S = F01(x2, y2) = F12(x0, y0) = F20(x1, y1)

1



However, adding up the evaluations to get S is cheaper and simpler.

We’re now ready to define the barycentric coordinates (α, β, γ) of the point (x, y):

α =
F12(x, y)

S

β =
F20(x, y)

S

γ =
F01(x, y)

S

Because of the way we defined S, it’s immediately obvious that they add up to one: α + β + γ = 1. (In

fact, in computation γ is often equivalently defined as 1− α− β to avoid a third division.)

Since the barycentric coordinates are just constant rescalings of the edge functions, they can also

be used to define the inside of the triangle: a point is inside the triangle if and only if all its barycentric

coordinates have the same sign. Since the barycentric coordinates add up to 1, it’s not hard to see this is

equivalent to saying that they all lie in the range [0, 1].

Remember each edge function, and thus its corresponding barycentric coordinate, is zero along

the line containing the edge. A vertex of the triangle is a point on two edges, i.e. where two of these edge

functions or barycentric coordinates are zero. Since the barycentric coordinates sum to one, the nonzero

barycentric coordinate must be 1. Again, it’s not hard to verify this:

• The barycentric coordinates of vertex (x0, y0) are (α = 1, β = 0, γ = 0)

• The barycentric coordinates of vertex (x1, y1) are (α = 0, β = 1, γ = 0)

• The barycentric coordinates of vertex (x2, y2) are (α = 0, β = 0, γ = 1)

This can be generalized to the following critical property of barycentric coordinates:

For any point ~x with barycentric coordinates (α, β, γ), we have ~x = α~x0 + β~x1 + γ~x2

Together with the requirement they sum to 1, this can in fact be used as an alternative definition of

barycentric coordinates. It says that every point in the plane is a weighted average of the triangle’s

vertices, with weights equal to the barycentric coordinates (which sum to 1 just like the weights in an

average should do).

1.1 Linear Interpolation in 1D

Before making use of barycentric coordinates in 2D, let’s quickly recall what linear interpolation means

in 1D. Given two points on the real line, x0 and x1, with associated values f0 and f1, linear interpolation

2



draws the line between the points as an estimate of the graph of the function f(x). For x between x0 and

x1, we can look up values on this line as a simple interpolation between the known function values.

It’s not hard to work out the formula for this line, in classic slope-intercept form:

y =
(

f1 − f0

x1 − x0

)
x +

(
f0x1 − f1x0

x1 − x0

)
This can be rearranged to:

y =
(

x1 − x

x1 − x0

)
f0 +

(
x− x0

x1 − x0

)
f1

Note that the coefficients of f0 and f1 in this form add up to 1, and so express the interpolated value y

as a weighted average of f0 and f1 with weights that depend on x. These weights are in fact the 1D line

version of barycentric coordinates. They too satisfy, for any x, the property that

x =
(

x1 − x

x1 − x0

)
x0 +

(
x− x0

x1 − x0

)
x1

which makes sense if you realize that linearly interpolating the function f(x) = x should be exact.

This linear interpolation operation is so common and important in computer graphics that it often

is abbreviated to the word lerp, as in “I lerped the colour from the two inputs”. Often it’s written in a

slightly different form, with a parameter variable t:

t =
x− x0

x1 − x0

y = (1− t)f0 + tf1 or f0 + t(f1 − f0)

Due to round-off error in floating point arithmetic, the first form (1−t)f0 +tf1 is generally recommended,

but you also sometimes see the second form.

1.2 Linear Interpolation on Triangles

We extend linear interpolation to 2D by using barycentric coordinates. If we have some function values

at the corners of a triangle, f0, f1 and f2, then we can interpolate between them in the triangle as:

f(~x) ≈ αf0 + βf1 + γf2

This works for vector-valued functions too, like RGB colour: the colour at a point inside a triangle can be

interpolated from colours stored at the vertices using barycentric coordinates.

Rasterization of triangles usually provides this as an option, specifying colours at the vertices of

triangles instead of just a constant colour for the entire triangle. This provides much smoother shading,

3



since the colour will now vary continuously across an edge from one triangle to the next. This is so

important in graphics that it has a special name, “Gouraud” shading or interpolation, named for Henri

Gouraud who introduced it. (In contrast, using a constant colour per triangle is sometimes called “flat

shading”.)

2 Transformations in 2D

We now have basic triangle rasterization sorted out; the next step back up the pipeline is to examine

geometric transformations in 2D.

2.1 Scaling

Right now our rasterization expects the coordinates of the triangles to be given with respect to the size

of the image in pixels. This is a bit inconvenient when building geometric models: for example, in a 2D

drawing program that models a printed page it might make a lot more sense to specify the coordinates of

triangle vertices in terms of millimetres or inches or points, and even for just displaying on the computer

if the user wants to change the resolution of the image it would be nice to avoid having to also change all

the coordinates.

This is solved by including a geometric transformation called scaling, which just means multi-

plying all coordinates by a scale factor just before rasterization. The idea is that the scale factor should

take into account the desired image resolution, converting from whatever coordinates the user made their

triangles with to image pixel coordinates.

The important thing to know in determining the scaling is how big the user wants the image to be

in terms of their coordinates. For example, if the user is drawing triangles with coordinates in inches, and

wants the image to match a standard 8.5” × 11” piece of paper, the graphics system needs to know, say

with a width variable w = 8.5 and a height variable h = 11. If this needs to be rendered to a 791 × 1024

image, for example, then the pixel dimensions are set to m = 791 and n = 1024. Finally, whenever a

triangle specified in inches on the paper is to be rasterized in the image, the vertices (x, y) are scaled to

pixel coordinates (x′, y′) by: (
x′

y′

)
=

(
m
w x
n
hy

)
The x and y scale factors in this case are nearly the same, but they needn’t be of course.

We can express scaling a little more conveniently (when it comes to integrating with additional

4



transformations yet to come) by using a 2× 2 matrix:(
x′

y′

)
=

(
m
w 0

0 n
h

)(
x

y

)
In particular, once we have the scaling matrix S calculated as

S =

(
m
w 0

0 n
h

)
then scaling points is just a matrix-vector multiply: ~x′ = S~x.

2.2 Rotation

Once we start using a diagonal matrix to encode the scaling transformation, we can think about what

other 2 × 2 matrices might do. The most important is rotation. Some easy trigonometry should let you

work out that if you rotate a point (x, y) around the origin counterclockwise by φ radians, you get new

coordinates (x′, y′):

x′ = cos(φ)x− sin(φ)y

y′ = sin(φ)x + cos(φ)y

(The Shirley textbook derives this by expressing the original point in polar coordinates, (r cos(α), r sin(α)),

which makes rotation trivial.) This also can be written as a matrix-vector multiply:(
x′

y′

)
=

(
cos φ − sinφ

sinφ cos φ

)(
x

y

)
This new transformation matrix, call it Q, is not diagonal but does have the very useful property of being

orthogonal: its columns are orthogonal and have unit vector length, as do its rows, so that for example

QT Q is the identity matrix I .

If the user has a set of triangles they drew, but now wants to rotate them all around the origin, our

graphics system can (before rasterization) multiply the points by the appropriate matrix and then by the

scaling matrix to get pixel coordinates.

This is where the whole matrix thing starts to become really useful: instead of multiplying every

point first by the rotation matrix Q and then by the scaling matrix S, i.e. evaluating ~x′ = S(Q~x), we can

form a single matrix product

M = SQ

and then much more efficiently transform points with a single multiply: ~x′ = M~x. This is an important

optimization if you have a lot of points to transform.

5


