
CS 314: Preliminaries, Image Basics

Robert Bridson

September 2, 2008

1 Preliminaries

The course web-page is at: http://www.ugrad.cs.ubc.ca/∼cs314. Details on the instructor, teach

assistants, lectures, office hours, labs, assignments and more will be available there.

Computer graphics is a topic defined by what is done, not how: loosely speaking, graphics en-

compasses everything involved in a computer producing visual output. Some people in graphics even

blur the boundaries and work with other sensory output, such as sound or touch. To make things work,

graphics can involve a multitude of other disciplines: hardware design (from circuits to robots and more),

psychology, data structures, computational physics, geometry, photography, art history, machine learn-

ing, networking, computer vision, optics, scientific computing, anatomy, architecture, and much, much

more. This course necessarily isn’t going to delve deeply into any one aspect, and will ignore many, but

will try to cover what many consider the core—or at least, a good representative slice—of the field: the

three-dimensional rendering pipeline. That is, how to go from a somewhat abstract description of a

three-dimensional scene to an image on the screen, preferable quickly, and preferably producing a beau-

tiful, realistic image.

This pipeline is of critical importance to many applications you probably are already aware of:

visual effects in films, 3D computer games, scientific visualization of experimental measurements. How-

ever, much of what we will study also plays an important foundational role in other graphics applications,

such as computer-aided design (CAD), abstract information visualization, font rendering and other core

two-dimensional operations in use all the time in modern user interfaces, animation, image processing

and more. There are two follow-on undergraduate courses offered at UBC that get deeper into graphics

topics, offered in alternate years: 424 (offered this academic year) on geometric modeling, and 426 (of-

fered next academic year) on animation and advanced rendering. For the truly intrepid, there may be

possibilities for joining graduate-level courses in the department on further advanced topics.

1



Graphics as a whole, this course included, has become a fairly mathematical subject. Concepts

and methods from linear algebra play a prominent role in particular; if you’re not comfortable with the

following, now is the time to review (Chapter 2, “Miscellaneous Math” in the textbook by Peter Shirley is

a great place to read up on these):

• vectors and matrices

• vector operations: addition, scaling, dot products, cross products in 3D, ...

• matrix operations: addition, scaling, matrix-vector multiplication, matrix-matrix multiplication, de-

terminants, inverting 2× 2 and 3× 3 matrices, ...

• basis vectors: linear independence, orthogonality, orthonormal bases, changing bases, ...

Some calculus will be needed too: derivatives, integrals, gradients (partial derivatives). Geometry and a

few other mathematical topics are just as important, but there we’ll cover most of what we need as we go.

Many of the bugs that graphics programmers run into tend to be “math bugs”; finding, analyzing and

fixing them will require geometric intuition and comfort with linear algebra.

Much of the programming work in this course, though not all of it, will involve a particular API

named OpenGL. This is the cross-platform standard for fast, typically hardware-accelerated, 2D and 3D

graphics. Later assignments and the final project will involve a fair amount of OpenGL programming.

However, the API itself will not be taught in lectures: it’s expected that you will mostly learn it on your

own, with help from the ”red book” reference text, labs, office hours, the web, and each other. Lecture

time will be spent on core concepts and underlying algorithms, studying OpenGL from a high level along

the way, alongside other rendering approaches.

2 Image Basics

With that out of the way, let’s take a look at the output we will be dealing with for the rest of the course,

images. You probably already have a good idea of what this is, say from experience with digital cameras:

a 2D array of pixels, each of which stores a colour.

What is a colour? This isn’t an entirely easy question to answer, and one we will come back to

in more detail later in the course. From a purely physical standpoint, colour could be characterized as a

total description of how much energy is in each frequency band in the visible electromagnetic spectrum:

light waves shorter than infra-red and longer than ultraviolet. However, humans are not capable of dis-

tinguishing all of this vast amount of information: our eyes boil it down essentially to three averaged

2



quantities, corresponding to the three types of colour cones in our retinas. Roughly speaking, one type of

cone measures the amount of reddish-yellowish (long wavelength) photons coming into our eye, another

cone measures the amount of greenish (medium wavelength) photons coming in, and another the amount

of blue-ish (short wavelength) photons coming in. We can then characterize every possible human colour

perception with just three numbers.1 Thus the colours in images are often specified as RGB values: one

number for the amount of Red, one number for Green, and one number for Blue. This of course corre-

sponds to most display technology, such as LCD panels and CRT screens, which have separate elements

for red, green, and blue which can average together to fool the eye into seeing most colours.2 Often people

will refer to these as colour channels: our normal representation will have a red channel, a green channel,

and a blue channel; each channel contains part of the information of the full image.

To summarize: at its simplest an image is a 2D array of pixels, each of which contains three num-

bers indicating RGB values. If the dimension of the image is m horizontally and n vertically, it will take

3mn numbers, which we commonly lay out sequentially in memory. There are of course many different

orders to lay out all of these numbers; the convenient standard we will follow for the most part in this

course (though not necessarily the best from a performance perspective) is to store the image as follows.

Each horizontal scanline (i.e. a horizontal slice of pixels through the image, the set of all pixels with a

given height) is stored one after the other, with the bottom-most scanline stored first, to which we will

give the y coordinate 0. Scanline 1 follows, then scanline 2, and so on up to scanline n − 1. Inside each

scanline the pixels are stored starting from x coordinate 0 on the far left, going up to m−1 on the far right.

Inside each pixel the red value is stored first, followed by the green and then the blue. We will typically

use a 32-bit floaing point value (usually float in C++) for each of these RGB values, though in hardware

and in some image storage formats 8-bit integers or more exotic data types are commonly used. We’ll

assume that the usual range for each colour value is between 0 and 1, with 0 being as dark as possible and

1 as light as possible: the RGB value (0, 0, 0) represents the darkest black the display can manage and the

RGB value (1, 1, 1) represents the brightest white the display can manage.3

It should be pointed out that in some contexts people flip the coordinate system vertically, so that

y = 0 is at the top of the display and y increases as you go downwards; in this course (and indeed, with

virtually all 3D computer graphics work) we will always take the bottom to be y = 0.

1This isn’t completely true: a poorly understood mutation gives some women a fourth type of cone, enabling them to see

differences in colours nobody else can—search the web for “tetrachromacy” for more on this now if you’re curious. Other species

than humans can have different numbers of cones too, and perceive colours completely differently.
2These displays, and in fact just about any display that’s ever been built, can’t quite produce all the colours our eyes can see,

just most of them; we’ll come back to this point later in the course.
3This assumption is very simplistic too, as it obviously is closely tied to a particular display’s capability; topics such as High

Dynamic Range and Colour Matching deal with being smarter about this.

3



While the details of a particular display usually aren’t quite as simple as this, our basic mental

model of an image is a rectangle with pixels centered on the integer lattice points from (0, 0) to (m −
1, n − 1). Each pixel conceptually covers a unit square: pixel (i, j) actually has a physical extent from

(i − 0.5, j − 0.5) to (i + 0.5, j + 0.5), since of course real displays show light in a whole region of the

display, not just at a single point. In the next topic, rasterization, it will be important to keep this in mind.

4


