
CS 314: 3D Transformations

Robert Bridson

September 16, 2008

1 3D Transformations

1.1 More on 3D Rotations

Last time we saw our first 3D rotation, around the x-axis in the yz-plane:
x′

y′

z′




1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)




x

y

z


This was mostly copied from the 2D rotation specified as φ radians counterclockwise in the plane. How-

ever, the notion of clockwise versus counterclockwise doesn’t entirely make sense in 3D: the right way to

specify the direction of a rotation is through the use of something like the right-hand-rule.

A rotation around the x-axis with a right-hand-rule means that if you placed your hand around

the x-axis with your thumb pointing in the direction of positive x, then your fingers would curl in the

direction of a positive (φ > 0) rotation. You can double check that the matrix above does that—though it

may take a while drawing diagrams on paper to see it.

Continuing on, we can introduce the right-hand-rule rotations around the other axes. For the y-

axis, the matrix is: 
cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)


and for the z-axis the matrix is: 

cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1


1



The z-axis rotation is directly equivalent to the 2D rotation in the xy-plane.

1.1.1 General Rotations

Just as in 2D (and in fact, as in any dimension), any orthogonal matrix represents either a rotation around

some axis or a rotation followed by a reflection. In particular if the columns of a 3× 3 orthogonal matrix

U satisfy a cross-product rule, namely the third column is the cross-product of the first with the second

~u3 = ~u1 × ~u2

then the matrix is a rotation that rotates the standard basis vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) to the

columns of U . (The other possibility for the last column is−~u1×~u2, which would indicate a reflection has

also taken place. This boils down to determining if the columns of U satisfy a left-hand-rule or a right-

hand-rule; if it has flipped relative to the original set of basis vectors, then a reflection has happened.)

This gives one approach for determining a 3D rotation around any arbitrary axis ~r by φ radians,

espoused by the Shirley text.

Given ~r = (r1, r2, r3), a unit-length vector, you can first construct an orthonormal set of basis

vectors that includes ~r, which satisfies the cross-product rule. For example, the second vector ~s can be

chosen as

~s =
(r2,−r1, 0)√

r2
1 + r2

2

if at least one of r1 and r2 is nonzero, and otherwise take ~s = (1, 0, 0). There are many other ways to

construct such a vector ~s: in class and in the text there was a different construction. Finally, the third basis

vector is ~t = ~r × ~s. (As an exercise, you can further confirm that any orthonormal basis satisfying the

cross-product rule ~t = ~r × ~s also satisfies ~r = ~s× ~t and ~s = ~t× ~r.) Build an orthogonal matrix QT with ~r,

~s and ~t as columns (or alternatively Q with ~r etc. as rows); Q is now a rotation matrix which rotates the

vector ~r to (1, 0, 0), since its inverse QT obviously maps (1, 0, 0) to ~r.1

Now, with this Q in place, we can rotate around ~r by

• first apply Q to change the basis to one where ~r is along (1, 0, 0),

• next use a rotation of φ around the new x-axis,

• and finally change the basis back to what it used to be with the inverse of Q, i.e. QT .

1To match the Shirley text’s description on page 148, our Q is the same as the text’s RT
uvw.

2



This is a product of three rotations, so it’s a rotation itself.

However, it turns out through other means the final result of all of this can be derived into a

somewhat simpler form:
cos φ + (1− cos φ)r2

1 (1− cos φ)r1r2 − r3 sinφ (1− cos φ)r1r3 + r2 sinφ

(1− cos φ)r1r2 + r3 sinφ cos φ + (1− cos φ)r2
2 (1− cos φ)r2r3 − r1 sinφ

(1− cos φ)r1r3 − r2 sinφ (1− cos φ)r2r3 + r1 sinφ cos φ + (1− cos φ)r2
3


This relies, of course, on ~r being unit length: if it’s not, you need to first normalize it by dividing by its

length. Obviously this isn’t going to work if ~r = 0.

1.1.2 General Orientations

Rotation matrices go hand-in-hand with the idea of orientation. If we take some object and put it in a

new orientation, i.e. rotate it, that new orientation can be represented as some general rotation matrix.

However, this isn’t the most concise or convenient representation of the orientation: imagine trying to

type in a matrix by hand that has to be orthogonal. Specifying an axis ~r and a rotation angle φ is better,

but also has problems in some situations: it can be hard to visualize what the necessary axis is for large

general rotations.

A very common approach to specifying general rotations uses so-called Euler angles, which boil

down to the fact that any 3D rotation can be written as a sequence of a rotation around the x-axis by some

angle φ1, then a rotation around the y-axis by φ2, and then a rotation around the z-axis by φ3. The order of

the axes isn’t critical as long as it’s consistent. This approach to specifying orientation is especially useful

for navigation in 3D: designing interfaces for programs where the user can interactively move around in

3D, such as when modeling 3D geometry or playing a first-person shooter game—motions of the mouse

might be directly connected to some of these Euler angles. For example, the angle φ1 could represent

tilting the view up or down, the angle φ2 the heading in the horizontal plane, and the angle φ3 if needed

would represent rolling to the left or right.

1.2 Scaling and Shearing

Scaling and shearing can be generalized from 2D in the obvious way. A scaling is expressed with a

diagonal matrix: 
s1 0 0

0 s2 0

0 0 s3


3



A shearing takes the identiy matrix plus one off-diagonal entry: for example, a shearing of the x-axis

proportional to z takes the form 
1 0 s

0 1 0

0 0 1


for some slope parameter s.

1.3 Translation

To include 3D translations (i.e. adding a fixed vector to any input) we can use exactly the same homoge-

neous coordinate trick we did before, expanding 3D vectors into 4D with an extra 1 (the homogeneous

coordinate) tacked on the end. The previous 3 × 3 transformation matrices can be expanded to 4 × 4 the

same way, e.g. for the y-axis rotation: 
cos(φ) 0 sin(φ) 0

0 1 0 0

− sin(φ) 0 cos(φ) 0

0 0 0 1


The new translation matrices add the translation vector to the fourth column of the 4× 4 identity matrix.

Translation by (x, y, z) is expressed as: 
1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1


With this in place, we can do the same composite operations (such as rotating around a point other than

the origin) as we worked out in 2D.

2 Different Spaces

With all this in place, it’s proved helpful to think in a number of different coordinate systems for the

rendering pipeline.

The input to rendering (the 3D geometry we’re trying to draw in the image) is implicitly given

in world space: it’s assumed those coordinates are relative to the 3D world’s natural origin and basis

vectors. For example, in a game set in a Martian army base, the world space origin might be at the centre

4



of the map, the x-axis could be one metre long and point east, the y-axis one metre long and point up, and

the z-axis one metre long and point south (to make it right-handed—note: I got it wrong in the lecture

and said north). The world space coordinates of 3D geometry in the map would be in metres, with the

first coordinate how far east of the centre of the map the point is etc. World space coordinates should be

independent of the rendering: they don’t care whether we want a top-view, side-view, or any other view

on the geometry; it’s what you would store in the “map file”.

The next coordinate system or space to consider is camera space, also known as eye space. A very

good way of thinking about 3D rendering is actually putting a virtual camera (or your own eye) in the

virtual world at a particular location, oriented a particular way, and simulating the light it would record.

Camera space is a coordinate system with its origin at the position of this virtual camera, with basis

vectors chosen so the camera’s x-axis points to the right in the image, the camera’s y-axis points upwards

in the image, and the camera’s z-axis points out of the image at the viewer. The camera can potentially

see all the geometry with negative z-values (camera z, not necessarily world space z). Typically camera

space is built just from rotations and translations, so that camera coordinates are measured in the same

units as world space (e.g. metres).

The transformation that takes world space coordinates and produces camera space coordinates is

called the model-view matrix. This is the 4×4 matrix which tells the renderer how to convert world-space

coordinates of geometry into the desired viewpoint for the image.

5


