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1 Using your Ears

Last time we discussed two difficulties in texture mapping: dealing with magnification (by using smooth

interpolation) and with minification (by using some sort of averaging). The arguments were pretty light

on technical grounds, appealing to subjective opinion about what looks good and what looks bad, and

to a fairly hazy idea of what the human visual system does to justify this a little. Unfortunately, while

experts certainly do have much more extensive knowledge about human vision, we are apparently still a

fair distance away from physiological and psychological research informing mathematical techniques in

computer graphics: we just don’t know really how to quantify what a good image is.

However, there is a related domain where we are on firmer mathematical footing: signal pro-

cessing, for audio in particular. Of course our ears work a bit differently than our eyes, but they do share

some sensitivities, and in fact are even more attuned to the issues of “edges” and interpolation and related

facets of minifaction and magnification.

The rest is not finished text, just point summary of what was discussed in class.

• The Fourier transform lets us represent any function (called a signal in 1D, or an image in 2D) as a

sum of sinusoids of different amplitudes and frequencies.

• To a large extent our ears, and to a lesser extent our eyes, perceive these amplitudes and frequencies.

When we hear music for example, our brain doesn’t perceive it in terms of time-varying air pressure,

but more closely as a sum of different frequencies (pitches).
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2 Magnification

• In audio, magnification is equivalent to taking a low-sampling-rate recording, say phone audio at

8KHz, and making a high-sampling-rate output, say CD quality at 44.1KHz. In this example, we go

from 8000 samples in one second of the input and produce 44,100 samples in the output—a factor

of a bit more 5.5× magnification.

• Since our ears hear things, more or less, in terms of frequencies and amplitudes of sinusoids, let’s

look at magnifying one sinusoid. That is, we’ve taken a perfect sine wave, sampled it at 8KHz, and

then from those discrete samples we want to generate new samples at a higher rate (44.1KHz) that

ideally exactly match the original sine wave.

• If we use nearest-neighbour, i.e. piecewise constant, interpolation the result has discontinuous steps.

If we take the Fourier transform—or just simply listen to this result—we see the original sine wave

(which is good) plus a spiky error with lots of high frequency artifacts (which is bad). We hear this

as weird high frequency distortion, and see it in images as distracting edges.

• Smoother interpolation can drastically reduce the error artifacts, making them much quieter—if

smooth enough, quiet enough we no longer hear them—because we get a better approximation of

the original sine wave.

3 Minification

• In audio, minification is the opposite: take a high-sampling-rate recording like a CD (44.1KHz) and

produce a low-sampling-rate output (like a phone at 8KHz). Let’s look at a sine wave again.

• The problems occur when the sine wave is higher frequency than we can reliably represent in the

low-sampling-rate output (i.e. 4Khz or higher). Drawing what happens if we just take the values

straight from the high-sampling-rate input—see the figure 4.2 in the Shirley text—makes it clear

that the true high frequency signal can end up in the low-sampling-rate output “aliased” as a much

lower frequency signal. This alias sounds like low frequency distortion, and is really distracting.

• The ideal thing to do is just eliminate any high frequencies that might alias to low frequency artifacts

in the output. This is called “anti-aliasing”.

• Simply taking an unweighted average over a block of samples, like we did for textures, damps

out the higher frequencies but doesn’t completely eliminate them—so we still have some degree of

aliasing.
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• Using a smoother weighted average can do a better job.

4 Quantization

• Another aspect of the problem we haven’t touched on yet is quantization. We can conceptually

work with image intensities or audio pressure levels which are continuous real numbers, and prac-

tically work with very high resolution floating-point numbers that are close enough to continuous

real numbers that we can usually just pretend they are the same. However, a real display or a real

audio system (any most real file formats) don’t support floating-point: instead, they may use only a

small fixed number of bits to encode each sample.

• For images, 8 bits per colour per pixel is the most common; for audio 16 bits is now the most

common. For displaying an image on a typical monitor this means only 256 possible different values

of red, green and blue are possible. For a CD this means only 65536 possible pressure levels are

possible.

• The process of converting a continuous real number (or high precision floating-point number) into

one of the small set of possible output values is called quantization

• The obvious quantization method of quantizing by just rounding to the nearest possible output

value is actually pretty bad. There are two problems to highlight. One is that the output signal is

going to jump discontinuously from one value to another, making it similar to the nearest-neighbour

magnification we know is bad—we can expect high frequency distortion or artifacts. The other is

that if the signal is quieter than the smallest nonzero value, it will quantize to just zero—e.g. instead

of the audio getting gradually quieter in the fade at the end of a song, it will instead suddenly cut

out into pure silence.

• Surprisingly, these problems can be fixed by adding random numbers (noise) to the output before

quantization, of just enough magnitude to allow the noise to randomly bump the quantized value

between two adjacent output values. For the first problem this doesn’t change the fact that there will

be high frequency artifacts, but the randomization will make them sound like white noise instead

of distortion—and our brain is very tolerant of noise, happily ignoring it and letting us perceive the

true signal underneath. For the second problem, the addition of noise means even when the signal

gets very quiet, we still get nonzero values—and the probability of getting a zero versus a nonzero

value is influenced by the very quiet signal. By averaging appropriately, our brain actually decodes

that probability and ends up perceiving the very quiet signal plus noise—which it can ignore.
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• This process of adding noise is called dithering.

• Dithering is crucial for audio, but also important for high quality rendering (where 256 values just

isn’t enough) and for rendering on low-bit-depth displays like black-and-white cell-phone screens.

• While random noise is probably optimal for audio, for images you have more leeway to dither in

other ways. For example, laser printers and newspapers use half-toning, a pattern of black dots of

varying sizes; your eyes average over the dots to get a perception of a varying grey-scale image plus

(if you look closely enough) a “noisy” screen that can be ignored. Computer displays do something

more sophisticated called “error diffusion” to get more accurate results than just random numbers

can provide.

5 Collision Detection

Now that we’ve basically seen all the core topics of rendering to some degreee, let’s talk about something

completely different: collisions. Detecting collisions is often a crucial part of animation, interactive 3D

applications, and even geometric editing. (Later we’ll also talk about collision response, what to do once

you’ve detected a collision, but we’ll start by just figuring out when they happen.)

What is a collision? This can actually have several different definitions depending on the applica-

tion:

• if two objects overlap in space (also known as intersection or penetration)

• if two objects are closer than some small threshold distance (also known as proximity)

• if during the motion of two objects from one time to another they touch or overlap, even if at the

start and end they are well separated (also known as continuous collision detection).

Each type of geometric description of either of the two objects involved in a decision will probably need

different treatment for all three of these options, making this a bit of a combinatorial explosion. We’re not

going to exhaustively consider this, but take a few examples and try to highlight a few general principles

that apply generally.

The first and foremost point to make for collisions is that it’s fine to cheat: as long as the results

look (and feel) good in graphics, it’s a good solution. We saw an example of this earlier in rendering,

where we might cheat the normals of a triangle mesh for the shading formulas to better approximate the

look of a smooth object, even though these are not the true geometric normals of the triangle mesh. Very
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often we can do the same with collisions: simplify and speed up the code by using simpler geometric

models for collisions than the ones we render.

As an example, very small objects (say droplets of water in a waterfall animation, or bullets in

a violent game) can be approximated as single points. Their motion during the time interval from one

frame of animation to the next can be further approximated as a straight line segment (i.e. assuming the

velocity is constant during that time interval). If the surrounding space is stationary—it just sits there

as these points move around—then continuous collision detection reduces to ray-tracing: define a ray

whose origin is the initial position of the point and whose direction is the velocity, and check if this ray

collides with the scene geometry for t values less than the length of the time interval. We already know

a lot about ray-tracing, including how to use BVH’s to speed it up, and the importance of dealing with

floating point rounding errors.

Note that in this example, even after many simplifications and assumptions we ended up with

something as least as complicated as ray-tracing, specifically the need for BVH’s to accelerate the compu-

tation and the need to be careful with rounding error. More general collision detection routines hit those

problems even harder than ray-tracing: if at all possible, you really want to simplify whatever you can for

collisions.
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