Chapter 9

Clipping
The Rendering Pipeline

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping

Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer
Problem:
Given a 2D line/polygon and a window, clip the line/polygon to their regions that are inside the window.

Objectives

- Efficiency
- Memory access
Analytic Solution

- **Intersection** of convex regions is convex
 - Why?
- L & D are *convex* - intersection is convex
 - single connected segment of L
- **Question**: Can boundary of two convex shapes intersect more than twice?
- Clipping - compute intersection of L with four boundary segments of window D
Line-Line Intersection

Intersection: x & y values equal in both representations - two linear equations in two unknowns (r,t)

$$G_1 = \begin{cases} x^1(t) = x_0^1 + (x_1^1 - x_0^1)t \\ y^1(t) = y_0^1 + (y_1^1 - y_0^1)t \end{cases} \quad t \in [0,1] \quad \begin{cases} x^2(r) = x_0^2 + (x_1^2 - x_0^2)r \\ y^2(r) = y_0^2 + (y_1^2 - y_0^2)r \end{cases} \quad r \in [0,1]$$

$$x_0^1 + (x_1^1 - x_0^1)t = x_0^2 + (x_1^2 - x_0^2)r$$
$$y_0^1 + (y_1^1 - y_0^1)t = y_0^2 + (y_1^2 - y_0^2)r$$
Intersection with vertical/horizontal lines

Intersection: x & y values equal in both representations - two linear equations in two unknowns (r, t)

\[G_1 = \begin{cases}
 x^1(t) = x_0^1 + (x_1^1 - x_0^1)t \\
 y^1(t) = y_0^1 + (y_1^1 - y_0^1)t
\end{cases} \quad t \in [0,1]
\]

\[G_2 = \begin{cases}
 x^2(r) = x_0^2 \\
 y^2(r) = y_0^2 + (y_1^2 - y_0^2)r
\end{cases} \quad r \in [0,1]
\]

\[x_0^1 + (x_1^1 - x_0^1)t = x_0^2
\]

\[t = \frac{x_0^2 - x_0^1}{x_1^1 - x_0^1}
\]

\[y_0^1 + (y_1^1 - y_0^1)t = y_0^2 + (y_1^2 - y_0^2)r
\]
Cohen-Sutherland Algorithm

Purpose:
Fast treatment of line segments that are trivially inside/outside window.

\(P = (x,y) \) - point to be classified against window \(D \)

Idea: Assign to \(P \) a binary code consisting of a bit for each edge of \(D \), using lookup table:

<table>
<thead>
<tr>
<th>bit</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(y < y_{\text{min}})</td>
<td>(y \geq y_{\text{min}})</td>
</tr>
<tr>
<td>2</td>
<td>(y > y_{\text{max}})</td>
<td>(y \leq y_{\text{max}})</td>
</tr>
<tr>
<td>3</td>
<td>(x > x_{\text{max}})</td>
<td>(x \leq x_{\text{max}})</td>
</tr>
<tr>
<td>4</td>
<td>(x < x_{\text{min}})</td>
<td>(x \geq x_{\text{min}})</td>
</tr>
</tbody>
</table>
Given L from (x_0, y_0) to (x_1, y_1) & rectangle D.

If bitwise **and** of the codes of (x_0, y_0) and (x_1, y_1) is not zero, or the bitwise **or** is zero, then L can be trivially handled (it is either totally outside or totally inside D).

Why?
Cohen-Sutherland Algorithm (cont’d)

\(\text{C-S-Clip} \left(P_0 = (x_0, y_0), P_1 = (x_1, y_1), x_{\min}, x_{\max}, y_{\min}, y_{\max} \right) \)

\(C_0 \leftarrow \text{code} \left(P_0 \right); \quad C_1 \leftarrow \text{code} \left(P_1 \right); \)

if \((\left(C_0 \text{ and } C_1 \right) \neq 0)\) then return;

if \((\left(C_0 \text{ or } C_1 \right) = 0)\) then draw \((P_0, P_1)\);

else if \((\text{OutsideWindow} \left(P_0 \right))\) then
begin

Edge \leftarrow \text{Window boundary of leftmost non-zero bit of } C_0;

\(P_2 \leftarrow P_0, P_1 \cap \text{Edge}; \)

\(\text{C-S-Clip} \left(P_2, P_1, x_{\min}, x_{\max}, y_{\min}, y_{\max} \right); \)

end

else

Edge \leftarrow \text{Window boundary of leftmost non-zero bit of } C_1;

\(P_2 \leftarrow P_0, P_1 \cap \text{Edge}; \)

\(\text{C-S-Clip} \left(P_0, P_2, x_{\min}, x_{\max}, y_{\min}, y_{\max} \right); \)

end

<table>
<thead>
<tr>
<th>bit</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(y < y_{\min})</td>
<td>(y \geq y_{\min})</td>
</tr>
<tr>
<td>2</td>
<td>(y > y_{\max})</td>
<td>(y \leq y_{\max})</td>
</tr>
<tr>
<td>3</td>
<td>(x > x_{\max})</td>
<td>(x \leq x_{\max})</td>
</tr>
<tr>
<td>4</td>
<td>(x < x_{\min})</td>
<td>(x \geq x_{\min})</td>
</tr>
</tbody>
</table>
3D clipping

- Determine portion of line inside axis-aligned parallelepiped (viewing frustum in NDC)
- Simple extension to 2D algorithms
- After perspective transform
 - means that clipping volume always the same
 - xmin=ymin= -1, xmax=ymax= 1 in OpenGL
 - boundary lines become boundary planes
 - but bit-codes still work the same way
 - additional front and back clipping plane
 - zmin = -1, zmax = 1 in OpenGL
Triangle Clipping

- How does intersection of rectangle & triangle looks like?
 - How many sides?

- How to expand clipping to triangles?
 - Hint: it is convex
 - Will develop on the board…
Cohen-Sutherland Algorithm for convex polygons

\(\text{C-S-Clip} (\text{poly} = P_0, ..., P_n, x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}) \)

for \(i = 1 \) to \(n \) \(C_i \leftarrow \text{code}(P_i) \);
if \(((C_0 \text{ and } C_1 \text{ and...and } C_n) \neq 0) \) then return;
if \(((C_0 \text{ or } C_1 \text{ or...or } C_n) = 0) \) then draw(poly);
else
for \(i = 1 \) to \(n \) if \((\text{OutsideWindow}(P_i)) \) then
begin

\(\text{Edge} \leftarrow \text{Window boundary of leftmost non-zero bit of } C_i; \)
\(P_{i-1,i} \leftarrow P_{i-1} \cdot P_i \cap \text{Edge}; \)
\(P_{i,i+1} \leftarrow P_i \cdot P_{i+1} \cap \text{Edge}; \)
\(\text{C-S-Clip}(P_0, ..., P_{i-1}, P_{i-1,i}, P_{i,i+1}, P_{i+1}, ..., P_n, x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}) ; \)
end

<table>
<thead>
<tr>
<th>(\text{bit})</th>
<th>(y < y_{\text{min}})</th>
<th>(y \geq y_{\text{min}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(y > y_{\text{max}})</td>
<td>(y \leq y_{\text{max}})</td>
</tr>
<tr>
<td>2</td>
<td>(x > x_{\text{max}})</td>
<td>(x \leq x_{\text{max}})</td>
</tr>
<tr>
<td>3</td>
<td>(x < x_{\text{min}})</td>
<td>(x \geq x_{\text{min}})</td>
</tr>
</tbody>
</table>