COMPUTER GRAPHICS
CS-314: Fall 2005
Instructor: Alla Sheffer

http://www.ugrad.cs.ubc.ca/~cs314
What is Computer Graphics?

- Generation of static/dynamic (realistic) images on computer
What is CG used for?

- GUI
 - Modeling systems
 - Applications
- Simulations & Visualization
What is CG used for?

- Movies
 - Animation
 - Special Effects
What is CG used for?

- Computer Games
What is CG used for?

- Images
 - Design
 - Advertising
 - Art
What is CG used for?

- Virtual reality
What This Course Is About

- Basic **algorithms** for
 - Modeling – generating models
 - Rendering – displaying models
 - (Animation – generating motion)
- Programming in OpenGL, C++
What This Course is NOT About

- NOT covered:
 - Artistic and design issues
 - Usage of commercial software packages
Expectations

- Hard course!
 - heavy math
 - heavy programming
- Fun course!
 - graphics programming
 addictive, create great demos
- Programming prereq
 - CPSC 216 (Program Design and Data Structures)
 - Good knowledge of C++
- Math prereq
 - MATH 200 (Calculus III)
 - MATH 221/223 (Matrix Algebra/Linear Algebra)
Other graphics courses

- CPSC 424: Geometric Modeling
 - Not given this year
- CPSC 426: Computer Animation
 - Given in the fall
- CPSC 514: Image-based Modeling and Rendering
- CPSC 526: Computer Animation
- CPSC 533A: Digital Geometry
- CPSC 533B: Animation Physics
- CPSC 533C: Information Visualization
Policies
Teaching Staff

- Instructor: Alla Sheffer
 - Office hrs: ClCSR 011/X651, Tue 4-5pm
 - Contact info:
 - sheffa@cs.ubc.ca
 - do NOT use for
 - assignment related questions
 - anything else which might be relevant to other students

- Temporary instructor (Sep 13-23):
 - Dan Julius djulius@cs.ubc.ca

- TA: Stephen Ingram sfingram@cs.ubc.ca
Course Information

- **Up-to-date information:**
 - http://www.ugrad.cs.ubc.ca/~cs314
 - updated often, reload frequently
 - WebCT (follow link from course home page)
 - Bulletin board
 - REQUIRES INTERCHANGE ACCOUNT!
 - I assume that once information is posted on WebCT or web-page students know it within 2 workdays
Labs

- Will have **only 2 labs** (cutbacks + low student registration)
 - Option 1: Mon 13-14, Thu 15:30-16:30
 - Option 2: Mon 13-14, Wed 12-13
 - Option 3: Wed 12-13, Thu 15:30-16:30
- Vote
- Example problems in spirit of written assignments and exams + help with programming assignments
- Strongly recommend that you attend
Grading

- **Assignments (programming + theory):** 45%
 - OpenGL+Math 101 (3%)
 - 3D Transformations (13%)
 - Rendering pipeline (13%)
 - OpenGL Extravaganza (16%)

- **Two Quizzes:** (30%)
 - 15% each

- **Final Exam:** (25%)
Important Dates

- Assignment 0 due: Sep 23
- Assignment 1 due: Oct 14
- Assignment 2 due: Nov 4
- Assignment 3 due:
 - Theory: Nov 25
 - Programming: Nov 28

- Quiz 1: Oct 20
- Quiz 2: Nov 10
Course Organization

- Programming assignments:
 - C++, Windows or Linux
 - OpenGL graphics library / GLUT for user interface

- Face to face grading in lab
 - Opportunity to show all the “cool” extra stuff
 - Test that you do know what every piece of your code does

- Hall of fame – coolest projects from 2002 on
Late Work

- 3 grace days
 - for unforeseen circumstances
 - strong recommendation: don’t use early in term
 - handing in late uses up automatically unless you tell us

- Otherwise: 25% per 24 hours
 - no work accepted after solutions handed out

- Exception: severe illness or crisis, as per UBC rules
 - MUST
 - Get approval from me ASAP (in person or email)
 - Turn in form with documentation

http://www.ugrad.cs.ubc.ca/~cs314/Vsep2005/policies.html#illness
Regrading

- To request assignment or exam regrade:
 - Submit detailed written explanation - why you think the grader was incorrect for the particular problem that you are disputing
- I will regrade *entire* assignment:
 - thus even if I agree with your original request, your score may end up higher or lower
Literature (optional)

- **Fundamentals of Computer Graphics**
 - *Second edition*
 - Peter Shirley, A.K. Peters

- **OpenGL Programming Guide**
 - J. Neider, T. Davis and W. Mason, Addison-Wesley
Learning OpenGL

- This is a graphics course using OpenGL
 - not a course ON OpenGL
- Upper-level class: learning APIs mostly on your own
 - only minimal lecture coverage
 - basics, some of the tricky bits
 - OpenGL Red Book
- many tutorial sites on the web
 - nehe.gamedev.net
Plagiarism and Cheating

- Don’t cheat, I will prosecute
 - insult to your fellow students and to me
- Theoretical assignments are individual work
- Programming assignments (when specified) can be done in pairs
- Can discuss ideas, browse Web
- But cannot copy code or answers
- **Must** be able to explain algorithms during face-to-face demo
 - or no credit for that assignment, possible prosecution
Citation

- Cite all sources of information in assignment’s README
 - web sites, study group members, books

http://www.ugrad.cs.ubc.ca/~cs314/Vsep2005/policies.html#plag
Rendering in 2D

- Raster display - discrete grid of elements
- Terminology
 - **Pixel**: basic element on device
 - **Resolution**: number of rows & columns in device
 - Measured in
 - Absolute values (1K x 1K)
 - Density values (300 dots per inch)
- **Screen Space**: Discrete 2D Cartesian coordinate system of the screen pixels
Basic Rendering – 2D

- Algorithms for:
 - Scan Conversion
 - Draw (lines)
 - Anti-Aliasing
 - Fill (polygons)
 - Clipping
 - Color
3D Graphics Components

- Geometric Modeling
 - polygons,
 - smooth surfaces,
 - etc...

- Rendering
Modeling Transformation: Object Placement
Viewing Transformation: Camera Placement
Perspective Projection
Hidden Line Removal
Hidden Surface Removal
Per-Polygon Shading
Specular Reflection
Phong Shading
Complex Lighting and Shading
Texture Mapping
Shadows (+Displacement Mapping)
Reflection Mapping
Animation

- Generating motion
 - Frame/State interpolation
 - Physical simulation
 - Motion capture
Lecture Syllabus

- Introduction + Math Review + OpenGL + Rendering Pipeline (week 1)
- Transformations (week 2/3)
- Rasterization (week 4/5)
- Clipping (week 5)
- Hidden Surface Removal (week 6)
- Review & Quiz (week 7)
 - Quiz: Oct 20
- Lighting Models (week 8)
- Texture mapping (week 9)
- Review & Quiz (week 10)
 - Quiz: Nov 10
- Shadows (week 11)
- Ray Tracing (week 11/12)
- Geometric Modeling (week 12/13)
- Review (last lecture)