Announcements

- Reminder important dates - still to come
 - Assignment 1 due: Oct 14
 - Assignment 2 due: Nov 4
 - Assignment 3 due:
 - Theory: Nov 25
 - Programming: Nov 28
 - Quiz 1: Oct 20
 - Quiz 2: Nov 10

A1Q3: “Given a line segment $S=(P_0, P_1)$ in 2D and a point P, write an algorithm to find if the point is on the line segment.”

Rasterizing Polygons/Triangles

- Basic surface representation in rendering
- Why?
 - Lowest common denominator
 - Can approximate any surface with arbitrary accuracy
 - All polygons can be broken up into triangles
 - Guaranteed to be:
 - Planar
 - Triangles - Convex
 - Simple to render
 - Can implement in hardware

Triangulation

- Convex polygons easily triangulated
- Concave polygons present a challenge
- Convexity - formal definition:
 Object S is convex iff for any two points $P, Q \in S$, $nP + (1 - n)Q \in S$, $n \in [0, 1]$.

OpenGL Triangulation

- Simple convex polygons
 - break into triangles, trivial
 - `glBegin(GL_POLYGON) ... glEnd()`

- Concave or non-simple polygons
 - break into triangles, more effort
 - `gluNewTess(), gluTessCallback(), ...`

Polygon Rasterization

- Assumptions - well behaved
 - simple - no self intersections
 - simply connected
 - (no holes)
- Solutions
 - Flood fill
 - Scan line
 - Implicit test
Formulation
- **Input**
 - polygon P with rasterized edges
- **Problem:** Fill its interior with specified color on graphics display

Flood Fill Algorithm
- **Input**
 - polygon P with rasterized edges
 - $P = (x,y) \in P$ point inside P

Flood Fill

Flood Fill - Drawbacks
- How do we find a point inside?
- Pixels visited up to 4 times to check if already set
- Need per-pixel flag indicating if set already
 - clear for every polygon!

Scanline Algorithm
- **Observation:** Each intersection of straight line with boundary moves it from/into polygon
- **Detect ($\&$ set) pixels inside polygon boundary (simple closed curve) with set of horizontal lines (pixel apart)**
Scan Conversion - Polygons

Scanline

ScanConvert (Polygon P, Color C)
For y := 0 to ScreenYMax do
 I := Points of intersections of edges of P with line Y = y;
 Sort I in increasing X order and
 Fill with color C alternating segments;
end;

- Limit to bounding box to speed up
- Other enhancements....

Bounding Box

Edge Walking

- Scanline is more efficient for specific polygons - trapezoids (triangles)

 \[
 \text{scanTrapezoid}(x_L, x_R, y_B, y_T, x'_L, x'_R)
 \]

 scanTrapezoid\((x_L, x_R, y_B, y_T, x'_L, x'_R)\) \((x_L, x_R, y_B, y_T, x'_L, x'_R)\)

 \[
 y_B \leq y = y_T \leq y_B \\
 x_L \leq x \leq x_R
 \]

 \[
 y_B \leq y = y_T \leq y_B \\
 x_L \leq x \leq x_R
 \]

 \[
 y_B \leq y = y_T \leq y_B \\
 x_L \leq x \leq x_R
 \]

Edge Walking

- Exploit continuous L and R edges

 \[
 \text{scanTrapezoid}(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R)
 \]

 \[
 \text{scanTrapezoid}(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R)
 \]

 \[
 \text{scanTrapezoid}(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R)
 \]

 \[
 \text{scanTrapezoid}(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R)
 \]
Edge Walking Triangles

- Split triangles into two regions with continuous left and right edges

\[
\text{scanTrapezoid}(x_0, y_0, x_1, y_1, \frac{1}{m_1}, \frac{1}{m_2})
\]

\[
\text{scanTrapezoid}(x_2, y_2, x_3, y_3, \frac{1}{w_1}, \frac{1}{w_2})
\]

Issues

- Many small triangles
- Setup cost is non-trivial
- Clipping triangles produces non-triangles

Modern Rasterization

- Define a triangle from implicit edge equations:

\[
\begin{align*}
&Ax_1 + By_1 + C = 0 \\
&Ax_2 + By_2 + C = 0 \\
&Ax_3 + By_3 + C = 0
\end{align*}
\]

- Two equations, three unknowns
- Express \(A, B \) in terms of \(C \)

Computing Edge Equations

- Computing \(A, B, C \) from \((x_1, y_1), (x_2, y_2)\)

\[
\begin{align*}
Ax_1 + By_1 + C &= 0 \\
Ax_2 + By_2 + C &= 0 \\
Ax_3 + By_3 + C &= 0
\end{align*}
\]

- Two equations, three unknowns
- Express \(A, B \) in terms of \(C \)

Computing Edge Equations

- Choose \(C = x_2 y_1 - x_1 y_2 \) for convenience
- Then \(A = y_2 - y_1 \) and \(B = x_1 - x_2 \)
- Our original implicit formula
- Note - in literature you can find same equation multiplied by -1

Edge Equations

- Given \(P_0, P_1, P_2 \), what are our three edges?
- Half-spaces defined by the edge equations must share the same sign on the interior of the triangle
 - Consistency (Ex: \([P_0, P_1], [P_1, P_2], [P_2, P_0]\))
 - How do we make sure that sign is positive?
 - Test & flip if needed (\(A = -A, B = -B, C = -C \))

Copyright 2005, Alla Sheffer, UBC
Edge Equations: Code

- Basic structure of code:
 - Setup: compute edge equations, bounding box
 - (Outer loop) For each scanline in bounding box...
 - (Inner loop) ...check each pixel on scanline:
 - evaluate edge equations
 - draw pixel if all three are positive

```c
findBoundingBox(&xmin, &xmax, &ymin, &ymax);
setupEdges (&a0,&b0,&c0,&a1,&b1,&c1,&a2,&b2,&c2);
for (int y = yMin; y <= yMax; y++) {
    for (int x = xMin; x <= xMax; x++) {
        float e0 = a0*x + b0*y + c0;
        float e1 = a1*x + b1*y + c1;
        float e2 = a2*x + b2*y + c2;
        if (e0 > 0 && e1 > 0 && e2 > 0)
            Image[x][y] = TriangleColor;
    }
}
```

// more efficient inner loop
for (int y = yMin; y <= yMax; y++) {
 float e0 = a0*xMin + b0*y + c0;
 float e1 = a1*xMin + b1*y + c1;
 float e2 = a2*xMin + b2*y + c2;
 for (int x = xMin; x <= xMax; x++) {
 if (e0 > 0 && e1 > 0 && e2 > 0)
 Image[x][y] = TriangleColor;
 e0 += a0; e1+= a1; e2 += a2;
 }
}

Triangle Rasterization Issues

- Exactly which pixels should be lit?
 - Pixels inside triangle edges
 - What about pixels exactly on the edge?
 - Draw - BUT order of triangles matters (it shouldn't)
 - Don't draw - BUT gaps possible between triangles
 - Need consistent (if arbitrary) rule
 - Example: draw pixels on left or top edge, but not on right or bottom edge

- Sliver

- Moving Slivers
Triangle Rasterization Issues

- Shared Edge Ordering

Interpolation - access triangle interior

- Interpolate between vertices:
 - z
 - r,g,b - colour components
 - u,v - texture coordinates
 - N_x, N_y, N_z - surface normals
- Equivalent
 - Bilinear interpolation
 - Barycentric coordinates

Barycentric Coordinates

- Area
 \[A = \frac{1}{2} \left| P_1P_2 \times P_3P_2 \right| \]
- Barycentric coordinates
 \[a_i = A_{P_2P_3} / A, \quad a_2 = A_{P_3P_1} / A, \]
 \[P = a_1P_1 + a_2P_2 + a_3P_3 \]

Barycentric Coords: Alternative formula

- For point \(P \) on scanline:
 \[P_x = P_2 + \frac{d_1}{d_1 + d_2} (P_3 - P_2) \]
 \[= (1 - \frac{d_1}{d_1 + d_2})P_2 + \frac{d_1}{d_1 + d_2}P_3 = \]
 \[= \frac{d_1}{d_1 + d_2}P_2 + \frac{d_2}{d_1 + d_2}P_3 \]

Computing Barycentric Coords

- similarly:
 \[P_x = P_2 + \frac{b_1}{b_1 + b_2} (P_3 - P_2) \]
 \[= (1 - \frac{b_1}{b_1 + b_2})P_2 + \frac{b_1}{b_1 + b_2}P_3 = \]
 \[= \frac{b_2}{b_1 + b_2}P_2 + \frac{b_1}{b_1 + b_2}P_3 \]
Computing Barycentric Coords

- combining
 \[P = \frac{c_1}{c_1 + c_2} P_1 + \frac{c_2}{c_1 + c_2} P_2 \]
- gives
 \[P = \frac{c_1 d_3 + d_1 P_1 + d_2}{d_1 + d_2} P_2 + \frac{c_2}{c_1 + c_2} \left(\frac{b_1}{b_1 + b_2} P_1 + \frac{b_2}{b_1 + b_2} P_2 \right) \]

Can verify barycentric properties
- \(a_1 + a_2 + a_3 = 1 \)
- \(0 \leq a_1, a_2, a_3 \leq 1 \)

Bilinear Interpolation

- Interpolate quantity along \(L \) and \(R \) edges, as a function of \(y \)
 - then interpolate quantity as a function of \(x \)