Chapter 6

Clipping

The Rendering Pipeline

Geometry Database -> Model/View Transform. -> Lighting -> Perspective Transform. -> Clipping

Scan Conversion -> Texturing -> Depth Test -> Blending -> Frame-buffer

Copyright Alla Sheffer
UBC 2004
Problem:
Given a set of 2D lines/polygons and a window, clip the lines/polygons to their regions that are inside the window.

Objectives
• Efficiency
• Display in portion of screen (rectangular window)

Analytic Solution
- *Intersection* of convex regions is convex
 - Why?
 - \(L \) & \(D \) are *convex* - intersection is convex
 - single connected segment of \(L \)
 - **Question**: Can boundary of two convex shapes intersect more than twice?
 - Clipping - compute intersection of \(L \) with four boundary segments of window \(D \)
Line-Line Intersection

Intersection: \(x \) & \(y \) values equal in both representations - two linear equations in two unknowns \((r,t)\)

\[
G_1 = \begin{cases}
 x^1(t) = x^1_0 + (x^1_1 - x^1_0)t \\
 y^1(t) = y^1_0 + (y^1_1 - y^1_0)t
\end{cases} \quad t \in [0,1] \\
G_2 = \begin{cases}
 x^2(r) = x^2_0 + (x^2_1 - x^2_0)r \\
 y^2(r) = y^2_0 + (y^2_1 - y^2_0)r
\end{cases} \quad r \in [0,1]
\]

\[
x^1_0 + (x^1_1 - x^1_0)t = x^2_0 + (x^2_1 - x^2_0)r
\]

\[
y^1_0 + (y^1_1 - y^1_0)t = y^2_0 + (y^2_1 - y^2_0)r
\]

Intersection with vertical/horizontal lines

Intersection: \(x \) & \(y \) values equal in both representations - two linear equations in two unknowns \((r,t)\)

\[
G_1 = \begin{cases}
 x^1(t) = x^1_0 + (x^1_1 - x^1_0)t \\
 y^1(t) = y^1_0 + (y^1_1 - y^1_0)t
\end{cases} \quad t \in [0,1] \\
G_2 = \begin{cases}
 x^2(r) = x^2_0 + (x^2_1 - x^2_0)r \\
 y^2(r) = y^2_0 + (y^2_1 - y^2_0)r
\end{cases} \quad r \in [0,1]
\]

\[
x^1_0 + (x^1_1 - x^1_0)t = x^2_0
\]

\[
t = \frac{x^2_0 - x^1_0}{x^1_1 - x^1_0}
\]

\[
y^1_0 + (y^1_1 - y^1_0)t = y^2_0 + (y^2_1 - y^2_0)r
\]
Purpose:
Fast treatment of line segments that are trivially inside/outside window.

\[P = (x, y) \] - point to be classified against window \(D \)

Idea: Assign to \(P \) a binary code consisting of a bit for each edge of \(D \), using lookup table:

<table>
<thead>
<tr>
<th>bit</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(y < y_{\min})</td>
<td>(y \geq y_{\min})</td>
</tr>
<tr>
<td>2</td>
<td>(y > y_{\max})</td>
<td>(y \leq y_{\max})</td>
</tr>
<tr>
<td>3</td>
<td>(x > x_{\max})</td>
<td>(x \leq x_{\max})</td>
</tr>
<tr>
<td>4</td>
<td>(x < x_{\min})</td>
<td>(x \geq x_{\min})</td>
</tr>
</tbody>
</table>

Cohen-Sutherland Algorithm (cont’d)

Given \(L \) from \((x_0, y_0)\) to \((x_1, y_1)\) & rectangle \(D \).

If bitwise and of the codes of \((x_0, y_0)\) and \((x_1, y_1)\) is not zero, or the bitwise or is zero, then \(L \) can be trivially handled (it is either totally outside or totally inside \(D \)).

Why?
Cohen-Sutherland Algorithm (cont’d)

\[C - S - \text{Clip}(P_i, P_j, x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}) \]

\[C_i \triangleq \text{code}(P_i); \quad C_j \triangleq \text{code}(P_j); \]

if \((C_i \text{ and } C_j) \neq 0 \) then return;

if \((C_i \text{ or } C_j) = 0 \) then draw \((P_i, P_j)\);

else if \((\text{OutsideWindow}(P_j)) \) then begin

\[\text{Edge} \triangleq \text{Window boundary of leftmost non-zero bit of } C_j; \]

\[P_i \triangleq P_i \cap \text{Edge}; \]

\[C - S - \text{Clip}(P_i, P_j, x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}); \]

end

else

\[\text{Edge} \triangleq \text{Window boundary of leftmost non-zero bit of } C_i; \]

\[P_j \triangleq P_j \cap \text{Edge}; \]

\[C - S - \text{Clip}(P_i, P_j, x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}); \]

end

Triangle Clipping

- How does intersection of rectangle & triangle looks like?
 - How to expand clipping to triangles?
 - Hint: it is convex
Questions: How can these ideas be used to design an algorithm for checking if:

- a point is inside a (convex) polygon?
- a (convex) polygon is inside/intersects/outside a (convex) polygon?