

Interpolation During Scanconvertion

- interpolate values between vertices
- z values
- r,g,b - colour components
- u,v - texture coordinates
- N_{x}, N_{y}, N_{z} - surface normals

Computing Normals

- polygon:

$$
N=\left(P_{2}-P_{1}\right) \times\left(P_{3}-P_{1}\right)
$$

- assume vertices ordered CCW when viewed from visible side of polygon
- normal for a vertex
- used for lighting
- supplied by model (i.e., sphere), or computed from neighboring polygons

Transforming Normals

- What is a normal?
- Vector
- Orthogonal (perpendicular) to plane/surface
- Do standard transformations preserve orthogonality?

Planes and Normals

- Plane - all points where $P \cdot N=0$
- $P N^{T}=0 \quad$ (transpose for matrix mult!)

$$
\begin{aligned}
& P=\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right] \\
& N=\left[\begin{array}{llll}
A & B & C & D
\end{array}\right]
\end{aligned}
$$

- Implicit form

University of
British Columbia

Finding Correct Normal Transform

- transform a plane
$P \quad P^{\prime}=P M \quad$ Given m ,

$$
N \longrightarrow N^{\prime}=N Q \quad \text { find } Q
$$

$$
P^{\prime} N^{, T}=0 \quad \text { stay perpendicular }
$$

$$
(P M)(N Q)^{T}=0 \quad \text { substitute from above }
$$

$$
P M Q^{T} N^{T}=0 \quad(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}
$$

$$
M Q^{T}=I
$$

$$
P N^{T}=0
$$

Ea $Q=\left(M^{-1}\right)^{T}$

