Chapter 2.5

The Rendering Pipeline

Geometry Database → Model/View Transform → Lighting → Perspective Transform → Clipping

Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer

Copyright: Alla Sheffer, UBC, 2004
Geometry Database

- Geometry database:
 - Application-specific data structure for holding geometric information
 - Depends on specific needs of application
 - Independent triangles, connectivity information etc.

Model/View Transformation

- Modeling transformation:
 - Map all geometric objects from a local coordinate system into a world coordinate system

- Viewing transformation:
 - Map all geometry from world coordinates into camera coordinates
Lighting:
- Compute the brightness of every point based on its material properties (e.g. Lambertian diffuse) and the light position(s)
- Computation is performed *per-vertex*

Perspective Transformation:
- Perspective transformation
 - Projecting the geometry onto the image plane
 - Projective transformations and model/view transformations can all be expressed with 4x4 matrix operations
Clipping

- Removal of parts of the geometry that fall outside the visible screen or window region
- May require re-tessellation of geometry

Scan Conversion

- Scan conversion
 - Turn 2D drawing primitives (lines, polygons etc.) into individual pixels (discretizing/sampling)
 - Interpolate color across primitive
 - Generate discrete fragments
Texture Mapping

- Texture mapping
 - "gluing images onto geometry"
 - Color of every fragment is altered by looking up a new color value from an image

Depth Test

- Depth test:
 - Remove parts of geometry hidden behind other geometry
 - Perform on every individual fragment
 - other approaches (later)
Blending

- **Blending:**
 - Final image: write fragments to pixels
 - Draw from farthest to nearest
 - No blending – replace previous color
 - Blending: combine new & old values with some arithmetic operations
 - *Framebuffer*: video memory on graphics board that holds resulting image & used to display it

Copyright: Alla Sheffer, UBC, 2004
The Rendering Pipeline

Geometry Database ➔ Model/View Transform. ➔ Lighting ➔ Perspective Transform. ➔ Clipping

Scan Conversion ➔ Texturing ➔ Depth Test ➔ Blending ➔ Frame-buffer

Discussion

- Advantages of a pipeline structure
 - Logical separation of the different components, modularity
 - Easy to parallelize:
 - Earlier stages can already work on new data while later stages still work with previous data
 - Similar to pipelining in modern CPUs
 - But much more aggressive parallelization possible (special purpose hardware!)
 - Important for hardware implementations!
- Only local knowledge of the scene is necessary
Discussion

- Disadvantages:
 - Limited flexibility
 - Some algorithms would require different ordering of pipeline stages
 - Hard to achieve while still preserving compatibility
 - Only local knowledge of scene is available
 - Shadows
 - Global illumination