
1

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 1

University ofUniversity of
British ColumbiaBritish Columbia

Chapter 7

Hidden Surface Removal

University ofUniversity of
British ColumbiaBritish Columbia

The Rendering Pipeline

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion

Depth
Test

DepthDepth
TestTestTexturingTexturingTexturing BlendingBlendingBlending

Frame-
buffer

FrameFrame--
bufferbuffer

2

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 2

University ofUniversity of
British ColumbiaBritish Columbia

Hidden Surface Removal

Major research topic
in CG

Multiple algorithms –
cover a few

Algorithm types
Object space
Image space

University ofUniversity of
British ColumbiaBritish Columbia

Hidden Surface Removal for
Polygonal Scenes

Input: Set of polygons in three-dimensional
space + viewpoint

Output: Two-dimensional image of projected
polygons, containing only visible portions

3

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 3

University ofUniversity of
British ColumbiaBritish Columbia

V

n

n

Back Face Culling (object space)

In closed polyhedron you
don’t see object “back”
faces

Assumption
Normals of faces point out
from the object

University ofUniversity of
British ColumbiaBritish Columbia

Back Face Culling

Determine back & front faces using sign of
inner product nv

In a convex object :
Invisible back faces
All front faces entirely visible ⇒ solves hidden
surfaces problem

In non-convex object:
Invisible back faces
Front faces can be visible, invisible, or partially
visible

θcosvnvnvnvnvn zzyyxx ⋅=++=⋅

Demo 2Demo 1

4

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 4

University ofUniversity of
British ColumbiaBritish Columbia

Depth Sort (object space)

Question: Given a set of polygons, is it
possible to:

sort them (by depth)
then paint them back to front (over each
other) to remove the hidden surfaces ?

Answer: No
Works for special cases

E.g. polygons
with constant z

University ofUniversity of
British ColumbiaBritish Columbia

Q

Depth Sort by Splitting

Given two polygons, P and Q, can order in z if:
1. P and Q do not overlap in their x extents
2. Or P and Q do not overlap in their y extents
3. Or P is totally on one side of Q’s plane
4. Or Q is totally on one side of P’s plane
5. Or P and Q do not intersect in projection plane

If neither holds, split P along its intersection with Q
into two smaller polygons
How does this apply to examples on previous slide?

Q
P

R

P
P < Q < R

5

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 5

University ofUniversity of
British ColumbiaBritish Columbia

BSP Trees

Different use of tests 3 & 4 in Depth Sort method
Define:

SP – set of polygons
P ∈ SP

Np normal to P
P in plane Lp

Subdivide into 3 groups:
Polygons in front of Lp (Np direction)
Polygons behind Lp

Polygons intersecting Lp

Split polygons in class 3 along Lp place pieces in
first 2 groups

University ofUniversity of
British ColumbiaBritish Columbia

BSP Trees

After subdivision
Polygons behind Lp can’t obscure P ⇒ draw
first
P can’t obscure polygons in front of Lp ⇒ draw
P
Draw polygons in front of Lp

Recursively subdivide and draw front & back
sets

BSP – Binary Space Partition

6

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 6

University ofUniversity of
British ColumbiaBritish Columbia

BSP Trees

Convention: Right
sibling in Np direction
BSP Tree is view
independent
Constructed using only
object geometry
Can be used in hidden
surface removal from
multiple views
How to choose what is
visible for given view?

University ofUniversity of
British ColumbiaBritish Columbia

BSP Trees

Given view direction V perform recursive tree
traversal

Visit back side tree(from this view)
Draw current node’s polygon
Visit from side tree

To decide which side is back/front for given
view check sign of VNp

7

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 7

University ofUniversity of
British ColumbiaBritish Columbia

Z-Buffer Algorithm (image space)

Idea: Instead of always painting over
pixel while scan-converting a polygon,
do that only if polygon’s depth is less
than current depth at that pixel

In each pixel save color and current
depth z

New color will replace current only if
closer in z

University ofUniversity of
British ColumbiaBritish Columbia

Z-Buffer

Questions: How to compute Project(P) &
Depth(Q,x,y)?

ZBuffer(Scene)
For every pixel (x,y) do PutZ(x,y,MaxZ);
For each polygon P in Scene do

Q := Project(P);
For each pixel (x,y) in Q do

z1 := Depth(Q,x,y);
if (z1<GetZ(x,y)) then

PutZ(x,y,z1);
PutColor(x,y,Col(P));

end;
end;

end;

8

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 8

University ofUniversity of
British ColumbiaBritish Columbia

Z-Buffer - Project(P)

Use regular perspective – loose depth
Need to store separately

Alternative: perspective warp

zp monotonic in z – use as depth to set order

(, , ,) , ,() ,x y z d
d d
d

d

x y z d
d

z
d

1

1 0 0 0
0 1 0 0
0 0 1

0 0 0
−
−
−

=
−
−

α

α
α

α
α

(, ,)
/
,
/
,x y z x

z d
y
z d

d
d zp p p =
−

−

2

1
α

α

University ofUniversity of
British ColumbiaBritish Columbia

Z-Buffer – Depth(Q,x,y)

z1

z2 z3

scanline Y=y

z z z4 1 1 1 21= + −α α() z z z5 2 1 2 31= + −α α()

Depth(, ,) ()Q x y z z= + −α α3 4 3 51

(,)x y

9

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 9

University ofUniversity of
British ColumbiaBritish Columbia

Z-Buffer Algorithm Properties

Image space algorithm

Data structure: Array of depth values

Common in hardware due to simplicity

Depth resolution of 32 bits is common

Scene may be updated on the fly adding
new polygons

zbuffer

University ofUniversity of
British ColumbiaBritish Columbia

The Rendering Pipeline

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion

Depth
Test

DepthDepth
TestTestTexturingTexturingTexturing BlendingBlendingBlending

Frame-
buffer

FrameFrame--
bufferbuffer

10

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 10

University ofUniversity of
British ColumbiaBritish Columbia

Transparency/Object Buffer

A-buffer - extension to Z-buffer
Save all pixel values
At the end – have list of polygons &
depths (order) for each pixel
Simulate transparency by weighting
different list elements

University ofUniversity of
British ColumbiaBritish Columbia

In software implementations - amount of
memory required for screen Z-buffer is
prohibitive
Scan-line Z-buffer algorithm:

Render image one line at a time
Take into account only polygons affecting this line

Combination of polygon scan-conversion & Z-
buffer algorithms
Only Z-buffer the size of scan-line is required
Scene must be available apriori
Image cannot be updated incrementally

Scan-Line Z-Buffer Algorithm

11

Computer GraphicsComputer Graphics

Copyright Alla Sheffer
UBC 2004

Hidden Surface Removal

Page 11

University ofUniversity of
British ColumbiaBritish Columbia

Scan-Line Z-Buffer Algorithm
ScanLineZBuffer(Scene)
Scene-2D := Project(Scene);
Sort Scene-2D into buckets of polygons P in

increasing order of YMin(P);
A := EmptySet;
For y := YMin(Scene-2D) to YMax(Scene-2D) do

For each pixel (x,y) in scanline Y=y do
PutZ(x,MaxZ);

A := A+{P in Scene : YMin(P)<=y};
A := A-{P in A : YMax(P)<y};
For each polygon P in A
For each pixel (x,y) in P’s spans on the scanline
z1 := Depth(P,x,y);
if (z1<GetZ(x)) then

PutZ(x,z1);
PutColor(x,y,Col(P));

end;
end;

end;

