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Chapter 6

Geometric Modeling
Part I: Terminology & Splines
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An Example
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Operations

Acquisition/Generation

Editing

Transmission/Storage

=+
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Geometry

Mathematical models of real world objects 
shape 
Categories:

Boundary representations
Freeform
Meshes & subdivision 

Volumetric representations
Primitive based
Voxels
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Volumetric - Volxelization

Voxel based
Space subdivided into equal  size 
boxes – each has in/out flag
Common in imaging applications 
(CT,MRI,Ultrasound)

Extension – Octree (recursive 
construction)
To draw use iso-surfaces –
boundary between voxels with 
different flag
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Volumetric - Primitives

Use set of volumetric primitives
Box, sphere, cylinder, cone, etc…

For complex  objects use boolean operations
Union
Intersection
Subtraction
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Freeform Representation

Explicit form: z=z(x,y)
Implicit form: f(x,y,z)=0
Parametric form: [x(u,v),y(u,v),z(u,v)]
Example – origin centered sphere of radius R:
Explicit

Implicit

Parametric:

:

:

( , , ) ( cos cos , sin cos , sin ), [ ,2 ], [ , ]

z R x y z R x y

x y z R

x y z R R R

= + − − ∪ = − − −

+ + − =

= ∈ ∈ −

2 2 2 2 2 2

2 2 2 2

2 2

0

0θ ψ θ ψ ψ θ π ψ π π

Explicit is a special case of 
implicit and parametric form 
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Splines – Free Form Curves

Description = basis functions + coefficients
Geometric meaning of coefficients (base)

Approximate/interpolate set of positions, 
derivatives, etc..

Usually parametric
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Polynomial Bases

Monomial basis                             
Geometrically meaningless

Other bases
Bezier
Hermitte
Lagrange, B-Spline, …

Number of coefficients = polynomial rank 
Geometric meaning 

coefficients - positions/derivatives, etc…

Advantage
easy to analyze, derivatives remain polynomial

,...},,,1{ 32 ttt
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Lagrange

Interpolates control points
P0, …,Pn

Base function Pi(t) per control-point Pi

Pi(t) =1 at i/n
Pi(t) =0 at j/n, j != i

Each base function is a polynomial of degree n

Uniqueness 
n equations in n unknowns (ai

j) lagrange

ni
n

iii
i tatataatP ++++= L2
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Analytic Continuity

C1(t) & C2(t), t ∈ [0,1] - parametric curves
Level of continuity at C1(1) and C2(0) is:

C-1:C1(1) ≠ C2(0) (discontinuous)
C0: C1(1) = C2(0) (positional continuity)
Ck, k > 0 : continuous up to k-th derivative

Continuity of single curve defined similarly   
for polynomial bases C∞

kjCC jj ≤≤= 0),0()1( )(
2

)(
1

C−1 C0 C1
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Geometric Continuity

Analytic continuity - too strong a requirement
Geometric continuity – common curve is 
geometrically smooth (per given level k)

Gk, k  ≤0 : Same as Ck

Gk k  =1: C’1 (1) =α C’2(0) α > 0
Gk k≥ 0 : In arc-length reparameterization of C1(t)
& C2(t), the two are Ck
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Geometric Continuity

E.g.

C1(t) & C2(t) are Ck (& Gk) continuous 
C1(t) & C3(t), are Gk continuous (not Ck)

C t t t t
C t t t t
C t t t t

1

2

3

0 5 0
0 0 5

2 2 0 0 25

( ) [cos( ), sin( )] [ . , ]
( ) [cos( ), sin( )] [ , . ]
( ) [cos( ), sin( )] [ , . ]

= ∈ −

= ∈

= ∈

π
π

π C1

C C2 3,
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Hermite Cubic Basis

Geometrically-oriented basis for cubic 
polynomials

2 positions + 2 tangents 
Has to satisfy 

h t i j ti j, ( ): , , , [ , ]= ∈0 1 0 1

curve h(0) h(1) h’(0) h’(1)
1

1
1

1

0
0
0 0

0

0 0
0

0
0
0
0h t00 ( )

h t01 ( )
h t10 ( )
h t11 ( )
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Four cubics which satisfy the conditions

Obtain - solve 4 linear equations in 4 
unknowns for each basis function

Hermite Cubic Basis (cont’d)

)1()()1()(

)32()(1)32()(
2

11
2

10

2
01

2
00

−=−=

−−=+−=

ttthttth

ttthttth

t

h
h00

h11

h01

h10
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Hermite Cubic Basis (cont’d)

Let C(t) be a cubic polynomial defined as the 
linear combination:

What are C(0), C(1), C’(0), C’(1) ?

Pi

C t P h t P h t T h t T h t( ) ( ) ( ) ( ) ( )= + + +0 00 1 01 0 10 1 11

hermite

C(0)=P0, C(1) = P1, C’(0)=T0, C’(1)=T1

To generate a curve through P0 & P1 with slopes T0 & 
T1 use 
C t P h t P h t T h t T h t( ) ( ) ( ) ( ) ( )= + + +0 00 1 01 0 10 1 11
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Natural Cubic Splines

Standard spline input – set of points
No derivatives

Interpolate by n cubic segments:
Derive           from continuity constraints
Solve 4n equations

n
iiP 0}{ =

Interpolation (2 equations):

C continuity constraints (  equations):

C continuity constraints (  equations):

1

2

n
C P C P i n

n
C C i n

n
C C i n

i i i i

i i

i i

( ) ( ) ,..,

( ) ( ) ,..,

( ) ( ) ,..,

' '

' ' ''

0 1 1
1

1 0 1 1
1

1 0 1 1

1

1

1

= = =

−

= = −

−

= = −

−

+

+

n
iiT 0}{ =
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Natural Cubic Splines

Need another 2 equations to reach 4n
Options

Natural end conditions:
Prescribed end conditions                
(derivative available):

0)1(,0)0( ''''
1 == nCC

nn TCTC == )1(,)0( '
0

'
1

P0

P1

P2

P3

P4

0T T4natural

prescribed
C t2 ( )



10

Computer GraphicsComputer Graphics

Copyright: Alla Sheffer, UBC 2004

Geometric Modeling

Page 10

University ofUniversity of
British ColumbiaBritish Columbia

B-Splines

Idea: Generate basis where functions are 
continuous cross domains 

Control point controls set of basis functions 
(to preserve continuity) 

Alternative view: continuous basis functions 
defined on several domains 
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Uniform Cubic B-Spline Curves
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Uniform Cubic B-Spline Curves

For any t ∈ [3,n] 

For any t ∈ [j,j+1] only 4 basis functions are 
non zero

Any point on cubic B-Spline is affine 
combination of at most 4 control points 

jj-1j-2j-3

N tj
3( )

t j+1

1)(
3

3 =∑
−=

j

ji
i tN
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B-Splines do not interpolate any control 
points

in particular end points

Way to force endpoint interpolation:
Let                         and same for other end

Question: 
What is the shape of the curve at endpoints if 
this method is used ?

Boundary Conditions for B-Splines

P P P0 1 2= =
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B-Spline Curve Properties

For n control points, C(t) is a piecewise 
polynomial of degree 3, defined for

C(t) is affine invariant

Questions:
What is C(i) ?
What is C’(i) ?
What is the continuity of C(t) ?

C t CH P Pi i
i

n
( ) ( ,.., )∈ +

=

−

3
0

3

U t n∈[ , ]3

bspline
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NURBs

B-Spline

Non-Uniform – different interval lengths (knots)
Rational – rational basis functions
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From Curves to Surfaces

Curve is expressed as inner product of 
coefficients and basis functions

To extend curves to surfaces - treat surface 
as a curve of curves
Assume       is not constant, but a function of 
second parameter v:

C u P B ui i
i

n

( ) ( )=
=
∑

0

Pi

P v Q B vi ij j
j

m

( ) ( )=
=
∑

0

C u v Q B v B u
i

n

ij j
j

m

i( , ) ( ) ( )=
= =
∑ ∑

0 0

bezpatch

Pi
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Bilinear Patches

Bilinear interpolation of 4 3D points - 2D 
analog of 1D linear interpolation between 2 
points in the plane
Given                    associated parametric 
bilinear surface for                      is:

Questions:
What does an isoparametric curve of a bilinear 
patch look like ?
When is a bilinear patch planar?

11100100 ,,, PPPP
]1,0[, ∈vu

P u v u v P u vP u v P uvP( , ) ( )( ) ( ) ( )= − − + − + − +1 1 1 100 01 10 11


