Computer Graphics

Copyright: Alla Sheffer, UBC 2004

Computer Graphics

Geometry

- Mathematical models of real world objects shape
- Categories:
- Boundary representations
- Freeform

- Meshes \& subdivision
- Volumetric representations
- Primitive based
- Voxels

Computer Graphics

Volumetric - Volxelization

- Voxel based
- Space subdivided into equal size boxes - each has in/out flag
- Common in imaging applications (CT,MRI,Ultrasound)
- Extension - Octree (recursive construction)
- To draw use iso-surfacesboundary between voxels with different flag

Volumetric - Primitives

- Use set of volumetric primitives
- Box, sphere, cylinder, cone, etc...
- For complex objects use boolean operations
- Union
- Intersection
- Subtraction

Computer Graphics

Freeform Representation

- Explicit form: $z=z(x, y) \begin{aligned} & \text { Explicit is a special case of } \\ & \text { implicit and parametric form }\end{aligned}$
- Implicit form: $f(x, y, z)=0$
- Parametric form: $[x(u, v), y(u, v), z(u, v)]$
- Example - origin centered sphere of radius R :

Explicit:
$z=+\sqrt{R^{2}-x^{2}-y^{2}} \cup z=-\sqrt{R^{2}-x^{2}-y^{2}}$
Implicit:
$x^{2}+y^{2}+z^{2}-R^{2}=0$
Parametric:
$(x, y, z)=(R \cos \theta \cos \psi, R \sin \theta \cos \psi, R \sin \psi), \theta \in[0,2 \pi], \psi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Splines - Free Form Curves

- Description = basis functions + coefficients
- Geometric meaning of coefficients (base)
- Approximate/interpolate set of positions, derivatives, etc..

Copyright: Alla Sheffer, UBC 2004

Polynomial Bases

- Monomial basis
- Geometrically meaningless $\left\{1, t, t^{2}, t^{3}, \ldots\right\}$
- Other bases
- Bezier
- Hermitte
- Lagrange, B-Spline, ...
- Number of coefficients = polynomial rank
- Geometric meaning
- coefficients - positions/derivatives, etc... British Columbia

Lagrange

- Interpolates control points
- $\mathrm{P}_{0}, \ldots, \mathrm{P}_{\mathrm{n}}$
- Base function $\mathrm{P}_{\mathrm{i}}(\mathrm{t})$ per control-point P_{i}
- $\mathrm{P}_{\mathrm{i}}(\mathrm{t})=1$ at i / n
- $P_{i}(\mathrm{t})=0$ at $\mathrm{j} / \mathrm{n}, \mathrm{j}!=\mathrm{i}$
- Each base function is a polynomial of degree n

$$
P_{i}(t)=a_{0}^{i}+a_{1}^{i} t+a_{2}^{i} t^{2}+\cdots+a_{n}^{i} t^{n}
$$

- Uniqueness
- n equations in n unknowns ($\mathrm{a}_{\mathrm{j}}^{\mathrm{i}}$)

Analytic Continuity

- $C_{1}(t) \& C_{2}(t), t \in[0,1]$ - parametric curves
- Level of continuity at $C_{1}(1)$ and $C_{2}(0)$ is:
- $C^{-1}: C_{1}(1) \neq C_{2}(0)$ (discontinuous)
- $C^{0}: C_{1}(1)=C_{2}(0)$ (positional continuity)
- $C^{k}, k>0$: continuous up to k-th derivative

- Continuity of single curve defined similarly
- for polynomial bases C^{∞}

Geometric Continuity

- Analytic continuity - too strong a requirement
- Geometric continuity - common curve is geometrically smooth (per given level k)
- $G^{k}, k \leq 0$: Same as C^{k}
- $G^{k} k=1: C^{\prime}{ }_{1}(1)=\alpha C^{\prime}{ }_{2}(0) \alpha>0$
- $G^{k} k \geq 0:$ In arc-length reparameterization of $C_{l}(t)$ $\& C_{2}(t)$, the two are C^{k}

Geometric Continuity

- E.g.

$$
\left.\begin{array}{l}
C_{1}(t)=[\cos (t), \sin (t)] t \in[-0.5 \pi, 0] \\
C_{2}(t)=[\cos (t), \sin (t)] t \in[0,0.5 \pi] \\
C_{3}(t)=[\cos (2 t), \sin (2 t)] t \in[0,0.25 \pi]
\end{array}\right\} C_{2}, C_{3}
$$

- $C_{1}(t) \& C_{2}(t)$ are $C^{k}\left(\& \mathrm{G}^{k}\right)$ continuous
- $C_{1}(t) \& C_{3}(t)$, are G^{k} continuous (not C^{k})

Hermite Cubic Basis

- Geometrically-oriented basis for cubic polynomials
- 2 positions +2 tangents
- Has to satisfy

$$
h_{i, j}(t): i, j=0,1, t \in[0,1]
$$

curve	$h(0)$	$h(1)$	$h^{\prime}(0)$	$h^{\prime}(1)$
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Hermite Cubic Basis (cont’d)

- Four cubics which satisfy the conditions

$$
\begin{array}{ll}
h_{00}(t)=t^{2}(2 t-3)+1 & h_{01}(t)=-t^{2}(2 t-3) \\
h_{10}(t)=t(t-1)^{2} & h_{11}(t)=t^{2}(t-1)
\end{array}
$$

- Obtain - solve 4 linear equations in 4 unknowns for each basis function

Hermite Cubic Basis (cont’d)

- Let $\mathrm{C}(\mathrm{t})$ be a cubic polynomial defined as the linear combination:
$C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)$
- What are $C(0), C(1), C^{\prime}(0), C^{\prime}(1)$?

- $C(0)=P_{0}, C(1)=P_{1}, C^{\prime}(0)=T_{0}, C^{\prime}(1)=T_{1}$
- To generate a curve through $P_{0} \& P_{1}$ with slopes T_{0} \& T_{1} use
$C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)$

Computer Graphics

Natural Cubic Splines

- Standard spline input - set of points $\left\{P_{i}\right\}_{=00}^{n}$
- No derivatives
- Interpolate by n cubic segments:
- Derive $\left\{T_{1}\right\}_{i=0}^{\}}$from continuity constraints
- Solve 4n equations
Interpolation (2n equations):
$C_{i}(0)=P_{i-1} \quad C_{i}(1)=P_{i} \quad i=1, . ., n$
C^{\prime} continuity constraints $(n-1$ equations $):$
$C_{i}^{\prime}(1)=C_{i+1}^{\prime}(0) \quad i=1, . ., n-1$
C^{2} continuity constraints $(n-1$ equations):
$C_{i}^{\prime \prime}(1)=C_{i+1}^{\prime \prime}(0) \quad i=1, . ., n-1$

Natural Cubic Splines

- Need another 2 equations to reach $4 n$
- Options
- Natural end conditions: $\quad C_{1}^{\prime \prime}(0)=0, C_{n}^{\prime \prime}(1)=0$
- Prescribed end conditions (derivative available): $\quad C_{1}^{\prime}(0)=T_{0}, C_{n}^{\prime}(1)=T_{n}$

B-Splines

- Idea: Generate basis where functions are continuous cross domains

- Control point controls set of basis functions (to preserve continuity)
- Alternative view: continuous basis functions defined on several domains

Uniform Cubic B-Spline Curves

- Definition

$$
\begin{aligned}
& C(t)=\sum_{i=0}^{n-1} P_{i} N_{i}^{3}(t) t \in[3, n] \\
& N_{i}^{3}(t)=\left\{\begin{array}{cc}
r^{3} / 6 & r=t-i \quad t \in[i, i+1] \\
\left(-3 r^{3}+3 r^{2}+3 r+1\right) / 6 & r=t-i-1 \quad t \in[i+1, i+2] \\
\left(3 r^{3}-6 r^{2}+4\right) / 6 & r=t-i-2 t \in[i+2, i+3] \\
(1-r)^{3} / 6 & r=t-i-3 t \in[i+3, i+4]
\end{array}\right.
\end{aligned}
$$

Uniform Cubic B-Spline Curves

- For any $\mathrm{t} \in[3, \mathrm{n}] \quad \sum_{i=j-3}^{j} N_{i}^{3}(t)=1$
- For any $t \in[j, j+1]$ only 4 basis functions are non zero
- Any point on cubic B-Spline is affine combination of at most 4 control points

Boundary Conditions for B-Splines

- B-Splines do not interpolate any control points
- in particular end points
- Way to force endpoint interpolation:
- Let $P_{0}=P_{1}=P_{2} \quad$ and same for other end
- Question:

B-Spline Curve Properties

- For n control points, $C(t)$ is a piecewise polynomial of degree 3, defined for
- $C(t) \in \bigcup_{i=0}^{n-3} C H\left(P_{i}, \ldots, P_{i+3}\right) \quad t \in[3, n]$
- $\mathrm{C}(\mathrm{t})$ is affine invariant
- Questions:
- What is $\mathrm{C}(\mathrm{i})$?
- What is $C^{\prime}(i)$?
- What is the continuity of $C(t)$?
bspline
- B-Spline

$$
\begin{aligned}
& C(t)=\sum_{i=0}^{n-1} P_{i} N_{i}^{3}(t) t \in[3, n] \\
& N_{i}^{3}(t)=\left\{\begin{array}{ccc}
r^{3} / 6 & r=t-i \quad t \in[i, i+1] \\
\left(-3 r^{3}+3 r^{2}+3 r+1\right) / 6 & r=t-i-1 \quad t \in[i+1, i+2] \\
\left(3 r^{3}-6 r^{2}+4\right) / 6 & r=t-i-2 t \in[i+2, i+3] \\
(1-r)^{3} / 6 & r & =t-i-3 t \in[i+3, i+4]
\end{array}\right.
\end{aligned}
$$

- Non-Uniform - different interval lengths (knots)
- Rational - rational basis functions

Computer Graphics
 Geometric Modeling

From Curves to Surfaces

- Curve is expressed as inner product of P_{i} coefficients and basis functions

$$
C(u)=\sum_{i=0}^{n} P_{i} B_{i}(u)
$$

- To extend curves to surfaces - treat surface as a curve of curves
- Assume P_{i} is not constant, but a function of second parameter v: $P_{i}(v)=\sum_{j=0}^{m} Q_{i j} B_{j}(v)$

$$
C(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} Q_{i j} B_{j}(v) B_{i}(u)
$$

Bilinear Patches

- Bilinear interpolation of 4 3D points - 2D analog of 1D linear interpolation between 2 points in the plane
- Given $P_{00}, P_{01}, P_{10}, P_{11}$ associated parametric bilinear surface for $u, v \in[0,1]$ is:

$$
P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}
$$

- Questions:
- What does an isoparametric curve of a bilinear patch look like ?
- When is a bilinear patch planar?

