Chapter 6

Geometric Modeling
Part I: Terminology & Splines

An Example
Operations

Acquisition/Generation

Transmission/Storage

Editing

Geometry

- Mathematical models of real world objects shape
- Categories:
 - Boundary representations
 - Freeform
 - Meshes & subdivision
 - Volumetric representations
 - Primitive based
 - Voxels
Volumetric - Volxelization

- Voxel based
 - Space subdivided into equal size boxes – each has in/out flag
 - Common in imaging applications (CT,MRI,Ultrasound)
- Extension – Octree (recursive construction)
- To draw use *iso-surfaces* – boundary between voxels with different flag

Volumetric - Primitives

- Use set of volumetric primitives
 - Box, sphere, cylinder, cone, etc...
- For complex objects use boolean operations
 - Union
 - Intersection
 - Subtraction
Freeform Representation

- Explicit form: $z = z(x, y)$
- Implicit form: $f(x, y, z) = 0$
- Parametric form: $[x(u, v), y(u, v), z(u, v)]$
- Example – origin centered sphere of radius R:

 Explicit:

 $$z = \sqrt{R^2 - x^2 - y^2} \cup z = -\sqrt{R^2 - x^2 - y^2}$$

 Implicit:

 $$x^2 + y^2 + z^2 - R^2 = 0$$

 Parametric:

 $$(x, y, z) = (R \cos \theta \cos \psi, R \sin \theta \cos \psi, R \sin \psi), \theta \in [0, 2\pi], \psi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$

Splines – Free Form Curves

- Description = basis functions + coefficients
- Geometric meaning of coefficients (base)
 - Approximate/interpolate set of positions, derivatives, etc..

- Usually parametric
Polynomial Bases

- Monomial basis
 - Geometrically meaningless \{1, t, t^2, t^3, \ldots\}
- Other bases
 - Bezier
 - Hermitte
 - Lagrange, B-Spline, ...
- Number of coefficients = polynomial rank
- Geometric meaning
 - coefficients - positions/derivatives, etc...
- Advantage
 - easy to analyze, derivatives remain polynomial

Lagrange

- Interpolates *control points*
 - \(P_0, \ldots, P_n\)
- Base function \(P_i(t)\) per control-point \(P_i\)
 - \(P_i(t) = 1\) at \(i/n\)
 - \(P_i(t) = 0\) at \(j/n, j \neq i\)
- Each base function is a polynomial of degree \(n\)
 \[P_i(t) = a_i^0 + a_i^1 t + a_i^2 t^2 + \cdots + a_i^n t^n\]
- Uniqueness
 - \(n\) equations in \(n\) unknowns \(\{a_i^j\}\)
Analytic Continuity

- $C_1(t)$ & $C_2(t)$, $t \in [0,1]$ - parametric curves
- Level of continuity at $C_1(1)$ and $C_2(0)$ is:
 - $C^1: C_1(1) \neq C_2(0)$ (discontinuous)
 - $C^0: C_1(1) = C_2(0)$ (positional continuity)
 - $C^k, k > 0$: continuous up to k-th derivative

Continuity of single curve defined similarly
- for polynomial bases C^∞

Geometric Continuity

- Analytic continuity - too strong a requirement
- Geometric continuity – common curve is geometrically smooth (per given level k)
 - $G^k, k \leq 0$: Same as C^k
 - $G^k k = 1: C'_1 (1) = \alpha C'_2(0)$ $\alpha > 0$
 - $G^k k \geq 0$: In arc-length reparameterization of $C_1(t)$ & $C_2(t)$, the two are C^k
Geometric Continuity

- E.g.
 \[C_1(t) = [\cos(t), \sin(t)] \quad t \in [-0.5\pi, 0] \]
 \[C_2(t) = [\cos(t), \sin(t)] \quad t \in [0, 0.5\pi] \]
 \[C_3(t) = [\cos(2t), \sin(2t)] \quad t \in [0, 0.25\pi] \]

- \(C_1(t) \) & \(C_2(t) \) are \(C^k \) (& \(G^k \)) continuous
- \(C_2(t) \) & \(C_3(t) \), are \(G^k \) continuous (not \(C^k \))

Hermite Cubic Basis

- Geometrically-oriented basis for cubic polynomials
 - 2 positions + 2 tangents
 - Has to satisfy

\[h_{i,j}(t): i, j = 0, 1, \quad t \in [0, 1] \]

<table>
<thead>
<tr>
<th>curve</th>
<th>(h(0))</th>
<th>(h(1))</th>
<th>(h'(0))</th>
<th>(h'(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_{00}(t))</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h_{01}(t))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h_{10}(t))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(h_{11}(t))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Hermite Cubic Basis (cont’d)

- Four cubics which satisfy the conditions:
 \[h_{00}(t) = t^2(2t - 3) + 1 \]
 \[h_{01}(t) = -t^2(2t - 3) \]
 \[h_{10}(t) = t(t - 1)^2 \]
 \[h_{11}(t) = t^2(t - 1) \]

- Obtain - solve 4 linear equations in 4 unknowns for each basis function.

Hermite Cubic Basis (cont’d)

- Let \(C(t) \) be a cubic polynomial defined as the linear combination:
 \[C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t) \]

- What are \(C(0), C(1), C'(0), C'(1) \)?
 - \(C(0) = P_0, C(1) = P_1, C'(0) = T_0, C'(1) = T_1 \)

 - To generate a curve through \(P_0 \) & \(P_1 \) with slopes \(T_0 \) & \(T_1 \) use
 \[C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t) \]
Natural Cubic Splines

- Standard spline input – set of points \(\{P_i\}_{i=0}^n \)
- No derivatives
- Interpolate by \(n \) cubic segments:
 - Derive \(\{T_i\}_{i=0}^n \) from continuity constraints
 - Solve \(4n \) equations

Interpolation (2n equations):
\[
C_i(0) = P_{i-1}, \quad C_i(1) = P_i, \quad i = 1,\ldots,n
\]

\(C^0 \) continuity constraints (\(n-1 \) equations):
\[
C_i'(1) = C_{i+1}'(0), \quad i = 1,\ldots,n-1
\]

\(C^1 \) continuity constraints (\(n-1 \) equations):
\[
C_i''(1) = C_{i+1}''(0), \quad i = 1,\ldots,n-1
\]

Need another 2 equations to reach \(4n \)

Options

- Natural end conditions: \(C_i''(0) = 0, C_n''(1) = 0 \)
- Prescribed end conditions (derivative available): \(C_i'(0) = T_0, C_n'(1) = T_n \)
B-Splines

- Idea: Generate basis where functions are continuous across domains

- Control point controls set of basis functions (to preserve continuity)

- Alternative view: continuous basis functions defined on several domains

Uniform Cubic B-Spline Curves

- Definition

\[C(t) = \sum_{i=0}^{n-1} P_i N_i^3(t) \quad t \in [3, n] \]

\[N_i^3(t) = \begin{cases}
 r^3 / 6 & r = t - i \\
 (-3r^3 + 3r^2 + 3r + 1) / 6 & r = t - i - 1 \\
 (3r^3 - 6r^2 + 4r + 1) / 6 & r = t - i - 2 \\
 (1 - r)^3 / 6 & r = t - i - 3 \\
 0 & \text{otherwise}
\]
Uniform Cubic B-Spline Curves

- For any $t \in [3, n]$ \(\sum_{i=j-3}^{j} N_i^3(t) = 1 \)

- For any $t \in [j, j+1]$ only 4 basis functions are non zero

- Any point on cubic B-Spline is affine combination of at most 4 control points

\[N_j^3(t) = \sum_{i=j-3}^{j} N_i^3(t) \]

Boundary Conditions for B-Splines

- B-Splines do not interpolate any control points
 - in particular end points

- Way to force endpoint interpolation:
 - Let \(P_0 = P_1 = P_2 \) and same for other end

- Question:
 - What is the shape of the curve at endpoints if this method is used?
B-Spline Curve Properties

- For n control points, $C(t)$ is a piecewise polynomial of degree 3, defined for

 $$C(t) = \bigcup_{i=0}^{n-3} CH(P_i, ..., P_{i+3}) \quad t \in [3,n]$$

- $C(t)$ is affine invariant

Questions:
- What is $C(i)$?
- What is $C'(i)$?
- What is the continuity of $C(t)$?

NURBs

- B-Spline

 $$C(t) = \sum_{i=0}^{n-1} P_i N_i^3(t) \quad t \in [3,n]$$

 $$N_i^3(t) = \begin{cases}
 r^3 / 6 & r = t - i \quad t \in [i,i+1] \\
 (-3r^3 + 3r^2 + 3r + 1) / 6 & r = t - i - 1 \quad t \in [i+1,i+2] \\
 (3r^3 - 6r^2 + 4) / 6 & r = t - i - 2 \quad t \in [i+2,i+3] \\
 (1-r)^3 / 6 & r = t - i - 3 \quad t \in [i+3,i+4]
 \end{cases}$$

- Non-Uniform – different interval lengths (knots)
- Rational – rational basis functions

 $$C(t) = \frac{\sum_{i=0}^{n-1} w_i P_i N_i^3(t)}{\sum_{i=0}^{n-1} w_i N_i^3(t)} \quad t \in [3,n]$$
From Curves to Surfaces

- Curve is expressed as inner product of \(P_i \) coefficients and basis functions
 \[C(u) = \sum_{i=0}^{n} P_i B_i(u) \]
- To extend curves to surfaces - treat surface as a curve of curves
- Assume \(P_i \) is not constant, but a function of second parameter \(v \):
 \[P_i(v) = \sum_{j=0}^{m} Q_{ij} B_j(v) \]
 \[C(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} Q_{ij} B_j(v) B_i(u) \]

Bilinear Patches

- Bilinear interpolation of 4 3D points - 2D analog of 1D linear interpolation between 2 points in the plane
- Given \(P_{00}, P_{01}, P_{10}, P_{11} \) associated parametric bilinear surface for \(u, v \in [0,1] \) is:
 \[P(u,v) = (1-u)(1-v)P_{00} + (1-u)vP_{01} + u(1-v)P_{10} + uvP_{11} \]
- Questions:
 - What does an isoparametric curve of a bilinear patch look like?
 - When is a bilinear patch planar?