Computer Graphics

Copyright: Alla Sheffer, UBC 2004

Freeform Representation

- Explicit form: $z=z(x, y) \quad \begin{aligned} & \text { Explicit is a special case of } \\ & \text { implicit and parametric form }\end{aligned}$
- Implicit form: $f(x, y, z)=0$
- Parametric form: $[x(u, v), y(u, v), z(u, v)]$
- Example - origin centered sphere of radius R :

```
Explicit:
    z=+\sqrt{}{\mp@subsup{R}{}{2}-\mp@subsup{x}{}{2}-\mp@subsup{y}{}{2}}\cupz=-\sqrt{}{\mp@subsup{R}{}{2}-\mp@subsup{x}{}{2}-\mp@subsup{y}{}{2}}
    Implicit:
    \mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}+\mp@subsup{z}{}{2}-\mp@subsup{R}{}{2}=0
    Parametric:
    (x,y,z)=(R\operatorname{cos}0\operatorname{cos}\psi,R\operatorname{sin}0\operatorname{cos}\psi,R\operatorname{sin}\psi),0\in[0,2\pi],\psi\in[-\frac{\pi}{2},\frac{\pi}{2}]
```


Polynomial Bases

- Monomial basis
- Geometrically meaningless $\left\{1, t, t^{2}, t^{3}, \ldots\right\}$
- Other bases
- Bezier
- Hermitte
- Lagrange, B-Spline, ...
- Number of coefficients = polynomial rank
- Geometric meaning
- coefficients - positions/derivatives, etc...
- Advantage
- easy to analyze, derivatives remain polynomial

Analytic Continuity

- $C_{1}(t) \& C_{2}(t), t \in[0,1]$ - parametric curves
- Level of continuity at $C_{1}(1)$ and $C_{2}(0)$ is:
- $C^{-1}: C_{1}(1) \neq C_{2}(0)$ (discontinuous)
- $C^{0}: C_{1}(1)=C_{2}(0)$ (positional continuity)
- $C^{k}, k>0$: continuous up to k-th derivative

$$
C_{1}^{(j)}(1)=C_{2}^{(j)}(0), 0 \leq j \leq k
$$

[^0]
Geometric Continuity

- Analytic continuity - too strong a requirement
- Geometric continuity - common curve is geometrically smooth (per given level k)
- $G^{k}, k \leq 0$: Same as C^{k}
- $G^{k} k=1: C^{\prime}{ }_{1}(1)=\alpha C^{\prime}{ }_{2}(0) \alpha>0$
- $G^{k} k \geq 0$: In arc-length reparameterization of $C_{I}(t)$ $\& C_{2}(t)$, the two are C^{k}

Sritish Columbia

Computer Graphics

Geometric Continuity

- E.g.
$C_{1}(t)=[\cos (t), \sin (t)] t \in[-0.5 \pi, 0]$
$C_{2}(t)=[\cos (t), \sin (t)] t \in[0,0.5 \pi]$
$C_{3}(t)=[\cos (2 t), \sin (2 t)] t \in[0,0.25 \pi]$

- $C_{1}(t) \& C_{2}(t)$ are $\mathrm{C}^{k}\left(\& \mathrm{G}^{k}\right)$ continuous
- $C_{1}(t) \& C_{3}(t)$, are G^{k} continuous (not $\left.\mathrm{C}^{k}\right)$

Hermite Cubic Basis (cont'd)

- Four cubics which satisfy the conditions

$$
\begin{aligned}
& h_{00}(t)=t^{2}(2 t-3)+1 \quad h_{01}(t)=-t^{2}(2 t-3) \\
& h_{10}(t)=t(t-1)^{2} \quad h_{11}(t)=t^{2}(t-1)
\end{aligned}
$$

- Obtain - solve 4 linear equations in 4 unknowns for each basis function

British Columbia

Hermite Cubic Basis

- Geometrically-oriented basis for cubic polynomials
- 2 positions +2 tangents
- Has to satisfy
$h_{i, j}(t): i, j=0,1, t \in[0,1]$

curve	$h(0)$	$h(1)$	$h^{\prime}(0)$	$h^{\prime}(1)$
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

University of
Sritish Columbia

Hermite Cubic Basis (cont'd)

- Let $\mathrm{C}(\mathrm{t})$ be a cubic polynomial defined as the linear combination:
$C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)$
- What are $C(0), C(1), C^{\prime}(0), C^{\prime}(1)$?

- $C(0)=P_{0}, C(1)=P_{1}, C^{\prime}(0)=T_{0}, C^{\prime}(1)=T_{1}$
- To generate a curve through P_{0} \& P_{1} with slopes T_{0} \& T_{1} use
$C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)$
University of
British Columbia

Natural Cubic Splines

- Standard spline input - set of points $\left\{P_{i}\right\}_{=00}^{n}$
- No derivatives
- Interpolate by n cubic segments:
- Derive $\left\{T_{i}\right\}_{i=0}^{n}$ from continuity constraints
- Solve 4n equations

```
Interpolation (2n equations):
C}(0)=\mp@subsup{P}{i-1}{}\quad\mp@subsup{C}{i}{}(1)=\mp@subsup{P}{i}{}\quadi=1,..,
C1}\mathrm{ continuity constraints ( }n-1\mathrm{ equations):
Ci
C2}\mathrm{ continuity constraints ( }n-1\mathrm{ equations):
Ci"}(1)=\mp@subsup{C}{i+1}{\prime\prime}(0)\quadi=1,..,n-
```


Computer Graphics

Uniform Cubic B-Spline Curves

- For any $t \in[j, j+1]$ only 4 basis functions are non zero
- Any point on cubic B-Spline is affine combination of at most 4 control points

Boundary Conditions for B-Splines

- B-Splines do not interpolate any control points
- in particular end points
- Way to force endpoint interpolation:
- Let $P_{0}=P_{1}=P_{2} \quad$ and same for other end
- Question:
- What is the shape of the curve at endpoints if this method is used?
ritish Columbia

B-Spline Curve Properties

- For n control points, $C(t)$ is a piecewise polynomial of degree 3, defined for
- $C(t) \in \bigcup_{i=0}^{n-3} C H\left(P_{i}, . ., P_{i+3}\right) \quad t \in[3, n]$
- $C(t)$ is affine invariant
- Questions:
- What is $\mathrm{C}(\mathrm{i})$?

University of
Sritish Columbia

- What is the continuity of $C(t)$?

Computer Graphics

From Curves to Surfaces

- Curve is expressed as inner product of P_{i} coefficients and basis functions

$$
C(u)=\sum_{i=0}^{n} P_{i} B_{i}(u)
$$

- To extend curves to surfaces - treat surface as a curve of curves
- Assume P_{i} is not constant, but a function of second parameter v: $P_{i}(v)=\sum_{j=0}^{m_{m}} Q_{i j} B_{j}(v)$

$C(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} Q_{i j} B_{j}(v) B_{i}(u)$

Bilinear Patches

- Bilinear interpolation of 4 3D points - 2D analog of 1D linear interpolation between 2 points in the plane
- Given $P_{00}, P_{01}, P_{10}, P_{11}$ associated parametric bilinear surface for $u, v \in[0,1]$ is:
$P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}$
- Questions:
- What does an isoparametric curve of a bilinear patch look like ?
- When is a bilinear patch planar?

[^0]: - Continuity of single curve defined similarly
 - for polynomial bases C^{∞}

