Computer Graphics

e
v
University of
British Columbia

* Chapter 12

Ray-Tracing

's“
Refractel

Ray

a3

University of

[British Columbia

Basic Ray-Tracing Algorithm

i

RayTrace(r,scene)
obj := Firstintersection(r,scene)
if (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));
else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);
end;

a3

University of

Eritish Columbia

Copyright2004, Alla Sheffer, UBC

Ray Tracing

Global Illumination Models

= Simple shading methods simulate local
illumination models
= No object interaction

= To simulate global illumination models need
more sophisticated & more computation-
intensive algorithms

= Ray-tracing deals with
= Reflectivity
= Transparency

EE3 . Shadows
-

University of

[British Columbia

Reflection and Refraction

1

n

. 0|6
sing, ¢
sinf, ¢,

n
Snell’s Law

9]
3 0,
v

University of

[British Columbia

Sub-Routines

= ReflectRay(r,obj) — computes reflected ray
(use obj normal at intersection)

= RefractRay(r,obj) - computes refracted ray
= Note: ray is inside obj

= Shade(reflect_color,refract_color,obj) —
compute illumination given three components

4o

University of

Erilish Columbia

Page 1

Computer Graphics

Ray-Obiject Intersections

= Kernel of ray-tracing = must be extremely
efficient

= Usually involves solving a set of equations

Example: Ray-Sphere intersection

ray: x(t)=p, +v.t, y(O)=p, +v 1, 2()=p. +v.t v,
(unit) sphere: x* +y* +z° =1 /
quadratic equation in t : P
0=(p, +v.1)* +(p, +v,0)" +(p. +v.0)* -1

:tz(vf +vj +vf)+2t(vax +p,v, +p.v.)

+(p; +p; +p)-1

iz

-
University of
British Columbia

More About Ray-Tracing

= Algorithm above has a BUG....
= Does not terminate

= Termination Criteria
= No intersection

= Contribution of secondary ray attenuated
below threshold — each reflection/refraction
attenuates ray
E=3 . Maximal depth is reached
.

[British Columbia

Simulating Shadows

= Trace ray from each ray-object intersection
point to light sources

= If the ray intersects an object in between =
point is shadowed from the light source

shadow = RayTrace(LightRay(obj,rlight));

return Shade(shadow,reflect_color,refract_color,obj);

4ig

University of

Eritish Columbia

Copyright2004, Alla Sheffer, UBC

Ray Tracing

Ray-Object Intersections

= Efficient for
= Primitives — Box, Sphere, etc..
= Quadrics
= Polygons
= Volumetric Data

= Problematic for free-form surfaces

= Subdivision?

s

~
University of
British Columbia

Optimized Ray-Tracing

1

= Basic algorithm simple but VERY expensive
= Optimize...

= Reduce number of rays traced

= Reduce number of ray-object intersection

calculations

raytracer

~

= Methods ‘9‘

= Bounding Boxes
= Spatial Subdivision

= Visibility & Intersection
= Tree Pruning

@
University of

[British Columbia

2 Ray-Tracing With Shadows

v’

rayshow

Refracted
Ray

4o

University of

Eri(ish Columbia

Pa

ge?2

Computer Graphics Ray Tracing

Advanced Phenomena

= Can (not allways efficiently) simulate
= Soft Shadows

= Fog

= Frequency Dependent Light (diamonds &
prisms)

= Barely handle S*DS*
» S — Specular
« D - diffuse

iz

-
University of
British Columbia

Copyright2004, Alla Sheffer, UBC Page 3

