University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner

Rasterization, Interpolation, Vision/Color

Week 2, Thu May 19

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005
News

- reminder: extra lab coverage with TAs
 - 12-2 Mondays, Wednesdays
 - for rest of term
 - just for answering questions, no presentations
- signup sheet for P1 demo time
 - Friday 12-5
Reading: Today

- FCG Section 2.11 Triangles (Barycentric Coordinates) p 42-46
- FCG Chap 3 Raster Algorithms, p 49-65
 - except 3.8
- FCG Chap 17 Human Vision, p 293-298
- FCG Chap 18 Color, p 301-311
 - until Section 18.9 Tone Mapping
FCG Errata

- p 54
 - triangle at bottom of figure shouldn’t have black outline

- p 63
 - The test if numbers $a [x]$ and $b [y]$ have the same sign can be implemented as the test $ab [xy] > 0$.
Reading: Next Time

- FCG Chap 8, Surface Shading, p 141-150
- RB Chap Lighting
Clarification: Arbitrary Rotation

- **problem:**
 - given two orthonormal coordinate systems XYZ and UVW
 - find transformation from XYZ to UVW
- **answer:**
- transformation matrix R whose columns are U,V,W:

$$R = \begin{bmatrix}
 u_x & v_x & w_x \\
 u_y & v_y & w_y \\
 u_z & v_z & w_z
\end{bmatrix}$$
Review: Projective Rendering Pipeline

- OCS - object/model coordinate system
- WCS - world coordinate system
- VCS - viewing/camera/eye coordinate system
- CCS - clipping coordinate system
- NDCS - normalized device coordinate system
- DCS - device/display/screen coordinate system

Transformation flow:
- O2W: modeling transformation
- W2V: viewing transformation
- V2C: projection transformation
- C2N: perspective divide
- N2D: viewport transformation
Review: Camera Motion

- rotate/translate/scale difficult to control
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector
Review: World to View Coordinates

- translate eye to origin
- rotate view vector ($\text{lookat} - \text{eye}$) to w axis
- rotate around w to bring up into vw-plane

\[
M_{w2v} = \begin{bmatrix}
 u_x & u_y & u_z & -u \cdot e \\
 v_x & v_y & v_z & -v \cdot e \\
 w_x & w_y & w_z & -w \cdot e \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Correction: Moving Camera or World?

- two equivalent operations
 - move camera one way vs. move world other way
- example
 - initial OpenGL camera: at origin, looking along -z axis
 - create a unit square parallel to camera at z = -10
 - translate in z by 3 possible in two ways
 - camera moves to z = -3
 - Note OpenGL models viewing in left-hand coordinates
 - camera stays put, but world moves to -7
 - resulting image same either way
 - possible difference: are lights specified in world or view coordinates?
Correction: World vs. Camera Coordinates

\[a = (1,1)_W \]

\[b = (1,1)_{C1} = (5,3)_W \]

\[c = (1,1)_{C2} = (1,3)_{C1} = (5,5)_W \]
Review: Graphics Cameras

- real pinhole camera: image inverted

- computer graphics camera: convenient equivalent
Review: Basic Perspective Projection

$$\frac{y'}{d} = \frac{y}{z} \rightarrow y' = \frac{y \cdot d}{z}$$

$$x' = \frac{x \cdot d}{z}, \quad z' = d$$

$$\begin{bmatrix} x \\ y \\ z/d \\ d \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{pmatrix}$$
Correction: Perspective Projection

- desired result for a point \([x, y, z, 1]^T\) projected onto the view plane:

\[
\frac{x'}{d} = \frac{x}{z}, \quad \frac{y'}{d} = \frac{y}{z}
\]

\[
x' = \frac{x \cdot d}{z} = \frac{x}{z/d}, \quad y' = \frac{y \cdot d}{z} = \frac{y}{z/d}, \quad z' = d
\]

- what could a matrix look like to do this?
Correction: Simple Perspective Projection Matrix

\[
\begin{bmatrix}
x \\
z/d \\
y \\
z/d \\
d \\
1
\end{bmatrix}
\]

is homogenized version of

where \(w = z/d \)

\[
\begin{bmatrix}
x \\
y \\
z \\
z/d
\end{bmatrix}
\]
Review: Orthographic Cameras

- center of projection at infinity
- no perspective convergence
- just throw away z values

\[
\begin{bmatrix}
 x_p \\
 y_p \\
 z_p \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 0 & x \\
 0 & 1 & 0 & 0 & y \\
 0 & 0 & 0 & 0 & z \\
 0 & 0 & 0 & 1 & 1
\end{bmatrix}
\]
Review: Transforming View Volumes

- **Perspective View Volume**
 - VCS
 - $x=\text{left}$
 - $y=\text{top}$
 - $z=\text{-near}$
 - $x=\text{right}$
 - $y=\text{bottom}$
 - $z=\text{-far}$

- **Orthographic View Volume**
 - VCS
 - $x=\text{left}$
 - $y=\text{top}$
 - $z=\text{-near}$
 - $x=\text{right}$
 - $y=\text{bottom}$
 - $z=\text{-far}$

- **NDCS**
 - $(-1,-1,-1)$
 - $(1,1,1)$

- VCS = View Coordinate System
- NDCS = Normalized Device Coordinate System
Review: Ortho to NDC Derivation

- scale, translate, reflect for new coord sys

VCS

<table>
<thead>
<tr>
<th>x=left</th>
<th>y=top</th>
<th>z=-far</th>
<th>z=-near</th>
</tr>
</thead>
</table>

NDCS

<table>
<thead>
<tr>
<th>y</th>
<th>z</th>
<th>(1,1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1,-1,-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
P' = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{\text{right} - \text{left}} \\
0 & \frac{2}{\text{top} - \text{bot}} & 0 & -\frac{\text{top} + \text{bot}}{\text{top} - \text{bot}} \\
0 & 0 & -\frac{2}{\text{far} - \text{near}} & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix} P
\]
Review: NDC to Viewport Transformation

- 2D scaling and translation

\[x_{DCS} = w \frac{(x_{NDCS} + 1)}{2} \]
\[y_{DCS} = h \frac{(y_{NDCS} + 1)}{2} \]
\[z_{DCS} = \frac{(z_{NDCS} + 1)}{2} \]

OpenGL

```glViewport(x, y, a, b);
default:
    glViewport(0, 0, w, h);```
Clarification: N2V Transformation

- general formulation
  - translate by
    - $x$ offset, width/2
    - $y$ offset, height/2
  - scale by width/height
  - reflect in $y$ for upper vs. lower left origin
  - FCG includes additional translation for pixel centers at (.5, .5) instead of (0,0)
    - feel free to ignore this
Review: Perspective Normalization

- perspective viewing frustum transformed to cube
- orthographic rendering of cube produces same image as perspective rendering of original
Review: Perspective Normalization

- distort such that orthographic projection of distorted objects is desired persp projection
  - separate division from standard matrix multiplies
  - clip after warp, before divide
  - division: normalization
Review: Coordinate Systems

View space (4-space, W=1)

Projection Matrix

Clip Space (4-Space parallelepiped because COP is moved backwards to infinity)

Divide by W

NDC (3-space parallel piped)

Scale & Bias

Screen Space (3-space parallelepiped)

http://www.btinternet.com/~danbgs/perspective/
Review: Perspective Derivation

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{r-l}{t-b} & 0 \\
0 & 0 & -(f+n) & -2fn \\
0 & 0 & f-n & f-n
\end{bmatrix}
\]

VCS

NDCS

y=top

x=left

y=bottom

z=-near

z=-far

x=right

(1,1,1)

(-1,-1,-1)
Review: Field-of-View Formulation

- FOV in one direction + aspect ratio (w/h)
- also set near, far
Projection Wrapup
Projection Taxonomy

planar projections

perspective: 1,2,3-point
parallel

oblique
orthographic
cabinet cavalier

top, front, side

axonometric: isometric dimetric trimetric

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20
Perspective Projections

- classified by vanishing points
Parallel Projection

- projectors are all parallel
  - vs. perspective projectors that converge
  - orthographic: projectors perpendicular to projection plane
  - oblique: projectors not necessarily perpendicular to projection plane
Axonometric Projections

- projectors perpendicular to image plane
- select axis lengths

A. ISOMETRIC

B. DIMETRIC

C. TRIMETRIC

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20
Oblique Projections

- projectors oblique to image plane
- select angle between front and z axis
  - lengths remain constant
- both have true front view
  - cavalier: distance true
  - cabinet: distance half
Demos

- Tuebingen applets from Frank Hanisch
  - [http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/AppletIndex.html#Transformationen](http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/AppletIndex.html#Transformationen)
Rasterization
Scan Conversion - Rasterization

- convert continuous rendering primitives into discrete fragments/pixels
  - lines
    - midpoint/Bresenham
  - triangles
    - flood fill
    - scanline
    - implicit formulation
  - interpolation
Scan Conversion

- given vertices in DCS, fill in the pixels
- start with lines
Basic Line Drawing

\[ y = mx + b \]
\[ y = \frac{(y_1 - y_0)}{(x_1 - x_0)}(x - x_0) + y_0 \]

- goals
  - integer coordinates
  - thinnest line with no gaps
- assume
  - \( x_0 < x_1 \), slope \( 0 < \frac{dy}{dx} < 1 \)
- how can we do this quickly?

```c
Line (x_0, y_0, x_1, y_1) begin
float dx, dy, x, y, slope;
 dx \leftarrow x_1 - x_0;
 dy \leftarrow y_1 - y_0;
 slope \leftarrow \frac{dy}{dx};
 y \leftarrow y_0
for x from x_0 to x_1 do
begin
 PlotPixel (x, Round(y));
y \leftarrow y + slope;
end;
end;
```
Midpoint Algorithm

- moving horizontally along x direction
  - draw at current y value, or move up vertically to y+1?
    - check if midpoint between two possible pixel centers above or below line

- candidates
  - top pixel: \((x+1,y+1)\)
  - bottom pixel: \((x+1, y)\)

- midpoint: \((x+1, y+.5)\)

- check if midpoint above or below line
  - below: top pixel
  - above: bottom pixel

- key idea behind Bresenham
  - [demo]
Making It Fast: Reuse Computation

- midpoint: if \( f(x+1, y+.5) < 0 \) then \( y = y+1 \)
- on previous step evaluated \( f(x-1, y-.5) \) or \( f(x-1, y+.05) \)
- \( f(x+1, y) = f(x,y) + (y_0-y_1) \)
- \( f(x+1, y+1) = f(x,y) + (y_0-y_1) + (x_1-x_0) \)

\[
\begin{align*}
y &= y_0 \\
d &= f(x_0+1, y_0+.5) \\
& \text{for } (x=x_0; x \leq x_1; x++) \{ \\
& \quad \text{draw}(x,y); \\
& \quad \text{if } (d<0) \text{ then } \{ \\
& \quad \quad y = y + 1; \\
& \quad \quad d = d + (x_1-x_0) + (y_0-y_1) \\
& \quad \} \text{ else } \{ \\
& \quad \quad d = d + (y_0-y_1) \\
& \quad \} \\
\end{align*}
\]
Making It Fast: Integer Only

- midpoint: if \( f(x+1, y+.5) < 0 \) then \( y = y+1 \)
- on previous step evaluated \( f(x-1, y-.5) \) or \( f(x-1, y+.05) \)
- \( f(x+1, y) = f(x,y) + (y_0-y_1) \)
- \( f(x+1, y+1) = f(x,y) + (y_0-y_1) + (x_1-x_0) \)

\[
y=y_0\\
d = f(x0+1, y0+.5)\\
for (x=x0; x <= x1; x++) {\\
  draw(x,y);\\
  if (d<0) then {\\
    y = y + 1;\\
    d = d + (x1 - x0) + (y0 - y1)\\
  } else {\\
    d = d + (y0 - y1)\\
  }\\
}\]

\[
y=y_0\\
2d = 2*(y0-y1)(x0+1) + (x1-x0)(2y0+1) + 2x0y1 - 2x1y0\\
for (x=x0; x <= x1; x++) {\\
  draw(x,y);\\
  if (d<0) then {\\
    y = y + 1;\\
    d = d + 2(x1 - x0) + 2(y0 - y1)\\
  } else {\\
    d = d + 2(y0 - y1)\\
  }\\
}\]
Rasterizing Polygons/Triangles

- basic surface representation in rendering
- why?
  - lowest common denominator
    - can approximate any surface with arbitrary accuracy
      - all polygons can be broken up into triangles
  - guaranteed to be:
    - planar
    - triangles - convex
  - simple to render
    - can implement in hardware
Triangulation

- convex polygons easily triangulated

- concave polygons present a challenge
OpenGL Triangulation

- simple convex polygons
  - break into triangles, trivial
  - `glBegin(GL_POLYGON) ... glEnd()`

- concave or non-simple polygons
  - break into triangles, more effort
  - `gluNewTess(), gluTessCallback(), ...`
Problem

- input: closed 2D polygon
- problem: fill its interior with specified color on graphics display
- assumptions
  - simple - no self intersections
  - simply connected
- solutions
  - flood fill
  - edge walking
Flood Fill

- simple algorithm
  - draw edges of polygon
  - use flood-fill to draw interior
Flood Fill

- start with seed point
- recursively set all neighbors until boundary is hit
Flood Fill

- draw edges
- run:

  \[
  \text{FloodFill} (\text{Polygon } P, \text{ int } x, \text{ int } y, \text{ Color } C)
  \]

  \[
  \text{if not ( OnBoundary } (x, y, P) \text{ or Colored } (x, y, C))
  \]

  \[
  \text{begin}
  \]

  \[
  \text{PlotPixel } (x, y, C);
  \]

  \[
  \text{FloodFill } (P, x + 1, y, C);
  \]

  \[
  \text{FloodFill } (P, x, y + 1, C);
  \]

  \[
  \text{FloodFill } (P, x, y - 1, C);
  \]

  \[
  \text{FloodFill } (P, x - 1, y, C);
  \]

  \[
  \text{end ;}
  \]

- drawbacks?
Flood Fill Drawbacks

- pixels visited up to 4 times to check if already set
- need per-pixel flag indicating if set already
  - must clear for every polygon!
Scanline Algorithms

- **scanline**: a line of pixels in an image
  - set pixels inside polygon boundary along horizontal lines one pixel apart vertically
General Polygon Rasterization

- how do we know whether given pixel on scanline is inside or outside polygon?
General Polygon Rasterization

- idea: use a parity test

for each scanline
    
    edgeCnt = 0;
    
    for each pixel on scanline (l to r)
        
        if (oldpixel->newpixel crosses edge)
            
            edgeCnt ++;
            
            // draw the pixel if edgeCnt odd
            
            if (edgeCnt % 2)
                
                setPixel(pixel);
Making It Fast: Bounding Box

- smaller set of candidate pixels
  - loop over $x_{\text{min}}$, $x_{\text{max}}$ and $y_{\text{min}}, y_{\text{max}}$ instead of all $x$, all $y$
Triangle Rasterization Issues

- moving slivers
- shared edge ordering
Triangle Rasterization Issues

- exactly which pixels should be lit?
  - pixels with centers inside triangle edges
- what about pixels exactly on edge?
  - draw them: order of triangles matters (it shouldn’t)
  - don’t draw them: gaps possible between triangles
- need a consistent (if arbitrary) rule
  - example: draw pixels on left or top edge, but not on right or bottom edge
  - example: check if triangle on same side of edge as offscreen point
Interpolation
Interpolation During Scan Conversion

- drawing pixels in polygon requires interpolating values between vertices
  - z values
  - r, g, b colour components
    - use for Gouraud shading
  - u, v texture coordinates
  - $N_x, N_y, N_z$ surface normals
- equivalent methods (for triangles)
  - bilinear interpolation
  - barycentric coordinates
Bilinear Interpolation

- Interpolate quantity along \( L \) and \( R \) edges, as a function of \( y \)
  - Then interpolate quantity as a function of \( x \)
Barycentric Coordinates

- weighted combination of vertices
- smooth mixing
- speedup
  - compute once per triangle

\[ P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3 \]
\[ \alpha + \beta + \gamma = 1 \]

0 ≤ \( \alpha, \beta, \gamma \) ≤ 1 for points inside triangle

“convex combination of points”
non-orthogonal coordinate system

- $P_3$ is origin
- $P_2 - P_3$, $P_1 - P_3$ are basis vectors

\[
\begin{align*}
P &= P_3 + \beta(P_2 - P_3) + \gamma(P_1 - P_3) \\
P &= (1 - \beta - \gamma)P_3 + \beta(P_2) + \gamma(P_1) \\
P &= \alpha(P_3) + \beta(P_2) + \gamma(P_1)
\end{align*}
\]
Deriving Barycentric Coordinates II

from bilinear interpolation of point P on scanline

\[ P_L = P_2 + \frac{d_1}{d_1 + d_2} (P_3 - P_2) \]

\[ = (1 - \frac{d_1}{d_1 + d_2}) P_2 + \frac{d_1}{d_1 + d_2} P_3 = \]

\[ = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \]
similarly

\[ P_R = P_2 + \frac{b_1}{b_1 + b_2} (P_1 - P_2) \]

\[ = (1 - \frac{b_1}{b_1 + b_2})P_2 + \frac{b_1}{b_1 + b_2} P_1 = \]

\[ = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \]
Deriving Barycentric Coordinates II

- combining

\[ P = \frac{c_2}{c_1 + c_2} \left( \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left( \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right) \]

- gives

\[ P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \]
\[ P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \]
Deriving Barycentric Coordinates II

thus  \[ P = a_1 \cdot P_1 + a_2 \cdot P_2 + a_3 \cdot P_3 \]

with

\[
\alpha = \frac{c_1}{c_1 + c_2} \cdot \frac{b_1}{b_1 + b_2}
\]

\[
\beta = \frac{c_2}{c_1 + c_2} \cdot \frac{d_2}{d_1 + d_2} + \frac{c_1}{c_1 + c_2} \cdot \frac{b_2}{b_1 + b_2}
\]

\[
\gamma = \frac{c_2}{c_1 + c_2} \cdot \frac{d_1}{d_1 + d_2}
\]

can verify barycentric properties

\[ \alpha + \beta + \gamma = 1, \quad 0 \leq \alpha, \beta, \gamma \leq 1 \]
Deriving Barycentric Coordinates III

- 2D triangle area

$$\alpha = \frac{A_{P_3}}{A}$$
$$\beta = \frac{A_{P_2}}{A}$$
$$\gamma = \frac{A_{P_1}}{A}$$

$$A = +A_{P_3} + A_{P_2} + A_{P_1}$$

$$P_1 (\alpha, \beta, \gamma) = (1,0,0)$$
$$P_2 (\alpha, \beta, \gamma) = (0,1,0)$$
$$P_3 (\alpha, \beta, \gamma) = (0,0,1)$$

Diagram showing the triangle with vertices $P_1$, $P_2$, $P_3$, and point $P$ inside the triangle.
Vision/Color
Simple Model of Color

- simple model based on RGB triples
- component-wise multiplication of colors
  - \((a_0, a_1, a_2) \times (b_0, b_1, b_2) = (a_0b_0, a_1b_1, a_2b_2)\)

why does this work?

Light \times object = color
Basics Of Color

- elements of color:
Basics of Color

- physics
  - illumination
    - electromagnetic spectra
  - reflection
    - material properties
    - surface geometry and microgeometery (i.e., polished versus matte versus brushed)
- perception
  - physiology and neurophysiology
  - perceptual psychology
Electromagnetic Spectrum

- Frequency (Hz)
- Wavelength (nm)

- AM radio
- Microwave
- Ultraviolet
- Gamma rays
- FM radio, TV
- Infrared
- X-rays
White Light

- Sun or light bulbs emit all frequencies within the visible range to produce what we perceive as the "white light"
Sunlight Spectrum
White Light and Color

- when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
- combination of frequencies present in the reflected light that determines what we perceive as the color of the object
Hue

- hue (or simply, "color") is dominant wavelength/frequency

- integration of energy for all visible wavelengths is proportional to intensity of color
Saturation or Purity of Light

- how washed out or how pure the color of the light appears
- contribution of dominant light vs. other frequencies producing white light
- saturation: how far is color from grey
  - pink is less saturated than red, sky blue is less saturated than royal blue
Intensity vs. Brightness

- intensity: measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source)

- lightness/brightness: perceived intensity of light
  - nonlinear
Physiology of Vision

- the retina
  - rods
    - b/w, edges
  - cones
    - color!
Physiology of Vision

- center of retina is densely packed region called the *fovea*.
  - cones much denser here than the *periphery*.
Foveal Vision

- hold out your thumb at arm’s length
Trichromacy

- three types of cones
  - L or R, most sensitive to red light (610 nm)
  - M or G, most sensitive to green light (560 nm)
  - S or B, most sensitive to blue light (430 nm)

- color blindness results from missing cone type(s)
Metamers

- A given perceptual sensation of color derives from the stimulus of all three cone types.

- Identical perceptions of color can thus be caused by very different spectra.
Metamer Demo

Adaptation, Surrounding Color

- color perception is also affected by
  - adaptation (move from sunlight to dark room)
  - surrounding color/intensity:
    - simultaneous contrast effect
Bezold Effect

- impact of outlines
Color/Lightness Constancy

Do they match?

Image courtesy of John McAnn
Color/Lightness Constancy

Do they match?
Color/Lightness Constancy
Color/Lightness Constancy
Color/Lightness Constancy
Color/Lightness Constancy
Color Constancy

- automatic “white balance” from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs. perception

From Color Appearance Models, fig 8-1
Stroop Effect

- red
- blue
- orange
- purple
- green
Stroop Effect

- blue
- green
- purple
- red
- orange

- interplay between cognition and perception
Color Spaces

- three types of cones suggests color is a 3D quantity. How to define 3D color space?

  - idea: perceptually based measurement
    - shine given wavelength ($\lambda$) on a screen
    - user must control three pure lights producing three other wavelengths (say R=700nm, G=546nm, and B=436nm)
    - adjust intensity of RGB until colors are identical
      - this works because of metamers!
Negative Lobes

- exact target match with phosphors not possible

- some red had to be added to target color to permit exact match using “knobs” on RGB intensity output of CRT
- equivalently theoretically to removing red from CRT output
- figure shows that red phosphor must remove some cyan for perfect match
- CRT phosphors cannot remove cyan, so 500 nm cannot be generated
Negative Lobes

- can’t generate **all** other wavelengths with **any** set of three positive monochromatic lights!

- solution: convert to new synthetic coordinate system to make the job easy
CIE defined three “imaginary” lights X, Y, and Z, any wavelength $\lambda$ can be matched perceptually by positive combinations.

Note that:
- $X \sim R$
- $Y \sim G$
- $Z \sim B$
Measured vs. CIE Color Spaces

- measured basis
  - monochromatic lights
  - physical observations
  - negative lobes

- transformed basis
  - “imaginary” lights
  - all positive, unit area
  - $Y$ is luminance, no hue
  - $X,Z$ no luminance
CIE Gamut and Chromaticity Diagram

- 3D gamut
- Chromaticity diagram
  - Hue only, no intensity
RGB Color Space (Color Cube)

- define colors with \((r, g, b)\) amounts of red, green, and blue
  - used by OpenGL
  - hardware-centric

- RGB color cube sits within CIE color space
  - subset of perceivable colors
  - scale, rotate, shear cube
Device Color Gamuts

- use CIE chromaticity diagram to compare the gamuts of various devices
  - X, Y, and Z are hypothetical light sources, no device can produce entire gamut
Gamut Mapping

Where does this color go?

Copyright 1995-1999, Adobe Systems Inc., all rights reserved
Additive vs. Subtractive Colors

- additive: light
  - monitors, LCDs
  - RGB model
- subtractive: pigment
  - printers
  - CMY model

```
\[
\begin{bmatrix}
C \\
M \\
Y \\
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix} - \begin{bmatrix}
R \\
G \\
B \\
\end{bmatrix}
\]
```
HSV Color Space

- more intuitive color space for people
  - $H = \text{Hue}$
  - $S = \text{Saturation}$
  - $V = \text{Value}$
    - or brightness $B$
    - or intensity $I$
    - or lightness $L$
HSI Color Space

- conversion from RGB
- not expressible in matrix

\[ I = \frac{R + G + B}{3} \]
\[ S = 1 - \frac{\min(R + G + B)}{I} \]
\[ H = \cos^{-1}\left[ \frac{1}{2} \left(\frac{(R - G) + (R - B)}{\sqrt{(R - G)^2 + (R - B)(G - B)}}\right) \right] \]
YIQ Color Space

- color model used for color TV
- Y is luminance (same as CIE)
- I & Q are color (not same I as HSI!)
- using Y backwards compatible for B/W TVs
- conversion from RGB is linear

\[
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix} = \begin{bmatrix}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

- green is much lighter than red, and red lighter than blue
Luminance vs. Intensity

- **luminance**
  - Y of YIQ
  - $0.299R + 0.587G + 0.114B$

- **intensity/brightness**
  - I/V/B of HSI/HSV/HSB
  - $0.333R + 0.333G + 0.333B$
Monitors

- monitors have nonlinear response to input
  - characterize by gamma
    - displayedIntensity = \( a^\gamma \) (maxIntensity)
- gamma correction
  - displayedIntensity = \( (a^{1/\gamma})^\gamma \) (maxIntensity)
    = a (maxIntensity)
Alpha

- transparency
  - \((r,g,b,\alpha)\)
- fraction we can see through
  - \(c = \alpha c_f + (1-\alpha)c_b\)
- compositing
Program 2: Terrain Navigation

- make colored terrain
  - 100x100 grid
    - two triangles per grid cell
  - face color varies randomly
Navigating

- two flying modes: absolute and relative
- absolute
  - keyboard keys to increment/decrement
  - x/y/z position of eye, lookat, up vectors
- relative
  - mouse drags
  - incremental wrt current camera position
  - forward/backward motion
  - roll, pitch, and yaw angles
Hints: Viewing

- don’t forget to flip y coordinate from mouse
  - window system origin upper left
  - OpenGL origin lower left

- all viewing transformations belong in modelview matrix, not projection matrix
  - project 1 template incorrect with this!
**Hint: Incremental Motion**

- motion is wrt current camera coords
  - maintaining cumulative angles wrt world coords would be difficult
  - computation in coord system used to draw previous frame is simple
- OpenGL modelview matrix has the info!
  - but multiplying by new matrix gives \( p' = Cp \)
  - you want to do \( p' = ICp \)
- trick:
  - dump out modelview matrix
  - wipe the stack with glLoadIdentity
  - apply incremental update matrix
  - apply current camera coord matrix
Demo