News
- extra lab coverage with TAs
 - 12-2 Mondays, Wednesdays
 - for rest of term
 - just for answering questions, no presentations

Reading: Today
- FCG Chapter 6
- FCG Section 5.3.1
- RB rest of Chap Viewing
- RB rest of App Homogeneous Coords

Reading: Next Time
- FCG Section 2.11
- FCG Chap 3
 - except 3.8
- FCG Chap 17 Human Vision (pp 293-298)
- FCG Chap 18 Color pp 301-311
 - until Section 18.9 Tone Mapping

Textbook Errata
- list at http://www.cs.utah.edu/~shirley/fcg/errata
 - p 113
 - last matrix, last column denominators
 1. D-a -> A-a
 2. E-b -> B-b
 3. F-c -> C-c
 - p 120
 - "Sometimes we will want to take the inverse of P" should be "M_p" instead of "P"

Correction²: Vector-Vector Subtraction
- subtract: vector - vector = vector
 \[\mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3 - v_3 \end{bmatrix} \]

- (3,2) - (6,4) = (−3,−2)
- (2,5,1) - (3,1,−1) = (−1,4,2)

argument reversal
- \[\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \]
Review: 2D Rotation

$x' = x \cos(\theta) - y \sin(\theta)$

$y' = x \sin(\theta) + y \cos(\theta)$

- counterclockwise, RHS

Review: 2D Rotation From Trig Identities

$x = r \cos(\phi)$

$y = r \sin(\phi)$

$x' = r \cos(\phi + \theta)$

$y' = r \sin(\phi + \theta)$

Trig Identity…

$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$

$y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute…

$x' = x \cos(\theta) - y \sin(\theta)$

$y' = x \sin(\theta) + y \cos(\theta)$

Review: 2D Rotation: Another Derivation

$x' = x \cos \theta - y \sin \theta$

$y' = x \sin \theta + y \cos \theta$

$x' = A - B$

$A = x \cos \theta$

Review: Shear, Reflection

- shear along x axis
 - push points to right in proportion to height

- reflect across x axis
 - mirror

Review: 2D Transformations

- linear transformations are combinations of
 - shear
 - scale
 - rotate
 - reflect

- properties of linear transformations
 - satisifies $T(s\mathbf{x} + t\mathbf{y}) = sT(\mathbf{x}) + tT(\mathbf{y})$
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: Linear Transformations

- matrix multiplication

$$
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 a & 0 \\
 0 & b
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
$$

- scaling matrix

$$
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
$$

- rotation matrix

$$
\begin{bmatrix}
 \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\end{bmatrix} =
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix}
$$

- translation multiplication matrix

- vector addition

$$
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 x \\
 y
\end{bmatrix} +
\begin{bmatrix}
 a \\
 b
\end{bmatrix} =
\begin{bmatrix}
 x + a \\
 y + b
\end{bmatrix} =
\begin{bmatrix}
 x'
\end{bmatrix}
$$

- matrix multiplication
Review: Composing Transformations

- order matters
 - 4x4 matrix multiplication not commutative!

- moving to origin
 - transformation of geometry into coordinate system where operation becomes simpler
 - perform operation
 - transform geometry back to original coordinate system

Review: Affine Transformations

- affine transforms are combinations of
 - linear transformations
 - translations

- properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: Homogeneous Coordinates Geometrically

<table>
<thead>
<tr>
<th>homogeneous</th>
<th>cartesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x, y, w))</td>
<td>((\frac{x}{w}, \frac{y}{w}))</td>
</tr>
</tbody>
</table>

- point in 2D cartesian + weight \(w\) = point \(P\) in 3D homogeneous coordinates
- multiples of \((x, y, w)\)
- all homogeneous points on 3D line \(L\) represent same 2D cartesian point
- homogenize to convert homog. 3D point to cartesian 2D point
- divide by \(w\) to get \((\frac{x}{w}, \frac{y}{w}, 1)\)
- \(w=0\) is direction; \((0,0,0)\) is undefined

Review: 3D Homog Transformations

- use 4x4 matrices for 3D transformations

Example Transforms

Translate(a,b,c)

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 1 & a & 0 & 0 \\
 b & 1 & 0 & 0 \\
 c & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Scale(a,b,c)

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 a & 0 & 0 & 0 \\
 0 & b & 0 & 0 \\
 0 & 0 & c & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Rotate(x,\theta)

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 \cos \theta & -\sin \theta & 0 & 0 \\
 \sin \theta & \cos \theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Review: Composing Transformations

- which direction to read?
 - right to left
 - interpret operations wrt fixed coordinates
 - moving object
 - left to right
 - OpenGL pipeline ordering!
 - interpret operations wrt local coordinates
 - changing coordinate system
 - OpenGL updates current matrix with postmultiply
 - `glTranslatef(2,3,0);`
 - `glRotatef(-90,0,0,1);`
 - `glVertexf(1,1,1);`
 - specify vector last, in final coordinate system
 - first matrix to affect it is specified second-to-last

Additional Notes

- Review: 3D Homogeneous Transformations
- properties of affine transforms
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Example Transformations

- **Translate(a,b,c)**
- **Scale(a,b,c)**
- **Rotate(x,\theta)**
- **Order Matters**
 - \(Ta Tb = Tb Ta, \ but \ Ra Rb \neq Rb Ra\ and \ Ta Rb \neq Rb Ta\)

Further Exploration

- properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition
Review: Arbitrary Rotation

- problem:
 - given two orthonormal coordinate systems \(XYZ\) and \(UVW\)
 - find transformation from one to the other
- answer:
 - transformation matrix \(R\) whose columns are \(U, V, W\):
 \[
 R = \begin{bmatrix}
 u_x & v_x & w_x \\
 u_y & v_y & w_y \\
 u_z & v_z & w_z
 \end{bmatrix}
 \]

Review: Interpreting Transformations

\[
p' = TRp
\]

- right to left: moving object
- left to right: changing coordinate system

Review: Transformation Hierarchies

- transforms apply to graph nodes beneath them
- design structure so that object doesn’t fall apart
- instancing

Review: Matrix Stacks

- OpenGL matrix calls postmultiply matrix \(M\) onto current matrix \(P\), overwrite it to be \(PM\)
- or can save intermediate states with stack
- no need to compute inverse matrices all the time
- modularize changes to pipeline state
- avoids accumulation of numerical errors

Review: Transforming Normals

- shear, nonuniform scale makes normal nonperpendicular
- need to use inverse transpose matrix instead

Review: Display Lists

- precompile/cache block of OpenGL code for reuse
 - efficiency
 - exact optimizations depend on driver
 - multiple instances of same object
 - static objects redrawn often
 - exploit hierarchical structure when possible
- set up list once with \(glNewList/glEndList\)
 - call multiple times
Using Transformations
- three ways
 - modelling transforms
 - place objects within scene (shared world)
 - viewing transforms
 - place camera
 - projection transforms
 - change type of camera

Viewing and Projection
- need to get from 3D world to 2D image
- projection: geometric abstraction
 - what eyes or cameras do
- two pieces
 - viewing transform:
 - where is the camera, what is it pointing at?
 - perspective transform: 3D to 2D
 - flatten to image

Rendering Pipeline

Rendering Pipeline
Rendering Pipeline

- result
 - all vertices of scene in shared 3D world coordinate system

Coordinate Systems

- result of a transformation
- names
 - convenience
 - giraffe: neck, head, tail
 - standard conventions in graphics pipeline
 - object/modelling
 - world
 - camera/viewing/eye
 - screen/window
 - raster/device

Projective Rendering Pipeline

- object world viewing
 - O2W WCS V2C
 - modeling transformation
 - viewing transformation
 - projection transformation
 - OCS - object/model coordinate system
 - WCS - world coordinate system
 - VCS - viewing/camera/eye coordinate system
 - CCS - clipping coordinate system
 - NDCS - normalized device coordinate system
 - DCS - device/display/screen coordinate system

Basic Viewing

- starting spot - OpenGL
 - camera at world origin
 - probably inside an object
 - y axis is up
 - looking down negative z axis
 - why? RHS with x horizontal, y vertical, z out of screen
 - translate backward so scene is visible
 - move distance $d = \text{focal length}$
 - can use rotate/translate/scale to move camera
 - demo: Nate Robins tutorial transformations
Viewing in Project 1
- where is camera in template code?
 - 5 units back, looking down -z axis

Convenient Camera Motion
- rotate/translate/scale not intuitive
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector

Convenient Camera Motion
- rotate/translate/scale not intuitive
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector

From World to View Coordinates: W2V
- translate eye to origin
- rotate view vector (lookat – eye) to w axis
- rotate around w to bring up into vw-plane

OpenGL Viewing Transformation
- gluLookAt(ex, ey, ez, lx, ly, lz, ux, uy, uz)
 - postmultiplies current matrix, so to be safe:

 \[
 \begin{bmatrix}
 1 & 0 & 0 & -ex \\
 0 & 1 & 0 & -ey \\
 0 & 0 & 1 & -ez \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

 - demo: Nate Robins tutorial projection

Deriving W2V Transformation
- translate eye to origin

 \[
 T = \begin{bmatrix}
 1 & 0 & 0 & -e_x \\
 0 & 1 & 0 & -e_y \\
 0 & 0 & 1 & -e_z \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
Deriving W2V Transformation

- rotate view vector (lookat – eye) to w axis
 - w is just opposite of view/gaze vector g
 \[w = -\hat{g} = -\frac{g}{\|g\|} \]

Moving the Camera or the World?

- two equivalent operations
 - move camera one way vs. move world other way
- example
 - initial OpenGL camera: at origin, looking along -z axis
 - create a unit square parallel to camera at z = -10
 - translate in z by 3 possible in two ways
 - camera moves to z = -3
 - Note OpenGL models viewing in left-hand coordinates
 - camera stays put, but square moves to -7
 - resulting image same either way
- possible difference: are lights specified in world or view coordinates?
Projections I

Pinhole Camera
- ingredients
 - box
 - film
 - hole punch
- results
 - pictures!

Pinhole Camera
- theoretical perfect pinhole

Pinhole Camera
- non-zero sized hole

Pinhole Camera
- field of view and focal length

Pinhole Camera
- field of view and focal length
Real Cameras

- pinhole camera has small aperture (lens opening)
 - hard to get enough light to expose the film

- lens permits larger apertures
- lens permits changing distance to film plane without actually moving the film plane

price to pay: limited depth of field

Graphics Cameras

- real pinhole camera: image inverted

- computer graphics camera: convenient equivalent

General Projection

- image plane need not be perpendicular to view plane

Perspective Projection

- our camera must model perspective
Perspective Projections
- classified by vanishing points

Projective Transformations
- planar geometric projections
- planar: onto a plane
- geometric: using straight lines
- projections: 3D -> 2D
- aka projective mappings
- counterexamples?

Projective Transformations
- properties
 - lines mapped to lines and triangles to triangles
 - parallel lines do NOT remain parallel
 - e.g. rails vanishing at infinity
 - affine combinations are NOT preserved
 - e.g. center of a line does not map to center of projected line (perspective foreshortening)

Perspective Projection
- project all geometry
 - through common center of projection (eye point)
 - onto an image plane

Basic Perspective Projection
- similar triangles
 \[
 \frac{y'}{y} = \frac{z}{d} \Rightarrow y' = \frac{y \cdot d}{z}
 \]
- nonuniform foreshortening
- not affine
Perspective Projection

- desired result for a point \([x, y, z, 1]^T\) projected onto the view plane:

\[
\begin{align*}
\frac{x'}{d} &= \frac{x}{z}, & \frac{y'}{d} &= \frac{y}{z} \\
x' = x \cdot \frac{d}{z}, & \quad y' = y \cdot \frac{d}{z}, & \quad z = d
\end{align*}
\]

- what could a matrix look like to do this?

Simple Perspective Projection Matrix

\[
\begin{bmatrix}
x \\
z/d \\
y \\
z/d \\
d
\end{bmatrix}
\]

is homogenized version of

where \(w = z/d\)

Simple Perspective Projection Matrix

\[
\begin{bmatrix}
x \\
z/d \\
y \\
z/d \\
d
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 & x \\
0 & 1 & 0 & 0 & y \\
0 & 0 & 1 & 0 & z \\
0 & 0 & 1/d & 0 & 1
\end{bmatrix}
\]

Perspective Projection

- expressible with 4x4 homogeneous matrix
- use previously untouched bottom row
- perspective projection is irreversible
 - many 3D points can be mapped to same \((x, y, d)\) on the projection plane
 - no way to retrieve the unique \(z\) values

Moving COP to Infinity

- as COP moves away, lines approach parallel
- when COP at infinity, orthographic view
Orthographic Camera Projection

- camera’s back plane parallel to lens
- infinite focal length
- no perspective convergence
- just throw away z values

\[
\begin{bmatrix}
 x_p \\
 y_p \\
 z_p \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Perspective to Orthographic

- transformation of space
- center of projection moves to infinity
- view volume transformed
- from frustum (truncated pyramid) to parallelepiped (box)

View Volumes

- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test

View Volume

- convention
 - viewing frustum mapped to specific parallelepiped
 - Normalized Device Coordinates (NDC)
 - same as clipping coords
 - only objects inside the parallelepiped get rendered
 - which parallelepiped?
 - depends on rendering system

Normalized Device Coordinates

left/right \(x = +/- 1 \), top/bottom \(y = +/- 1 \), near/far \(z = +/- 1 \)

Understanding Z

- z axis flip changes coord system handedness
- RHS before projection (eye/view coords)
- LHS after projection (clip, norm device coords)
Understanding Z
near, far always positive in OpenGL calls
- `glOrtho(left, right, bot, top, near, far);`
- `glFrustum(left, right, bot, top, near, far);`
- `glPerspective(fovy, aspect, near, far);`

Orthographic Derivation
- scale, translate, reflect for new coord sys

\[
\begin{align*}
 y' &= a \cdot y + b \\
 y &= \text{top} \Rightarrow y' &= 1 \\
 y &= \text{bot} \Rightarrow y' &= -1
\end{align*}
\]

\[
\begin{align*}
 b &= 1 - a \cdot \text{top}, b = -1 - a \cdot \text{bot} \\
 1 - a \cdot \text{top} &= -1 - a \cdot \text{bot} \\
 1 - (-1) &= -a \cdot \text{bot} - (-a \cdot \text{top}) \\
 2 &= a(-\text{bot} + \text{top}) \\
 a &= \frac{2}{\text{top} - \text{bot}}
\end{align*}
\]

same idea for right/left, far/near
Orthographic Derivation

- scale, translate, reflect for new coord sys

\[
P' = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{\text{right} - \text{left}} \\
0 & \frac{2}{\text{top} - \text{bot}} & 0 & -\frac{\text{top} + \text{bot}}{\text{top} - \text{bot}} \\
0 & 0 & -\frac{2}{\text{far} - \text{near}} & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Orthographic OpenGL

```c
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bot, top, near, far);
```

Projections II
NDC to Viewport Transformation

- generate pixel coordinates
- map x, y from range –1…1 (NDC) to pixel coordinates on the display
- involves 2D scaling and translation

 Origin Location

- yet more possibly confusing conventions
 - OpenGL: lower left
 - most window systems: upper left
 - often have to flip your y coordinates
 - when interpreting mouse position

Perspective Example

- tracks in VCS:
 - left x=-1, y=1
 - right x=1, y=1
- view volume
 - left = -1, right = 1
 - bot = -1, top = 1
 - near = 1, far = 4

Viewing Transformation

Projective Rendering Pipeline
Perspective Projection

- specific example
 - assume image plane at $z = -1$
 - a point $[x, y, z, 1]^T$ projects to $[-x/z, -y/z, -z/z, 1]^T$ or $[x, y, z, -z]^T$

Canonical View Volumes

- standardized viewing volume representation

 - orthographic
 - orthogonal
 - parallel
 - x or $y = \pm z$
 - front plane $z = -1$
 - back plane $z = 1$

Why Canonical View Volumes?

- permits standardization
- clipping
- easier to determine if an arbitrary point is enclosed in volume
- consider clipping to six arbitrary planes of a viewing volume versus canonical view volume
- rendering
- projection and rasterization algorithms can be reused

Projection Normalization

- one additional step of standardization
- warp perspective view volume to orthogonal view volume
- render all scenes with orthographic projection!

Predistortion

- projection transformation after w
- perspective division $/w$
Perspective Normalization
- perspective viewing frustum transformed to cube
- orthographic rendering of cube produces same image as perspective rendering of original

Demos
- Tuebingen applets from Frank Hanisch
 - http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/AppletIndex.html#Transformationen

Perspective Warp
- matrix formulation preserves relative depth (third coordinate)
- what does \(\alpha = 0 \) mean?

Projection Normalization
- distort such that orthographic projection of distorted objects is desired persp projection
- separate division from standard matrix multiplies
- clip after warp, before divide
- division: normalization

Projective Rendering Pipeline
Coordinate Systems

Perspective Derivation

earlier:

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 E & 0 & A & 0 \\
 0 & F & B & 0 \\
 0 & 0 & C & D \\
 0 & 0 & -1 & 0
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\]

complete: shear, scale, projection-normalization

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 E & 0 & A & 0 \\
 0 & F & B & 0 \\
 0 & 0 & C & D \\
 0 & 0 & -1 & 0
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\]

Perspective Derivation

\[
\begin{align*}
x' &= Ex + Az \\
y' &= Fy + Bz \\
z' &= Cz + D \\
w' &= -z
\end{align*}
\]

\[
\begin{align*}
x &= \text{left} \quad \rightarrow \quad x'/w' = 1 \\
x &= \text{right} \quad \rightarrow \quad x'/w' = -1 \\
y &= \text{top} \quad \rightarrow \quad y'/w' = 1 \\
y &= \text{bottom} \quad \rightarrow \quad y'/w' = -1 \\
z &= -\text{near} \quad \rightarrow \quad z'/w' = 1 \\
z &= -\text{far} \quad \rightarrow \quad z'/w' = -1
\end{align*}
\]

\[
\begin{align*}
y &= Fy + Bz, \quad y' &= \frac{Fy + Bz}{w'}, \quad w &= \frac{Fy + Bz}{-z}, \\
1 &= F \frac{y}{-z} + B \frac{z}{-z}, \quad 1 &= F \frac{y}{-z} - B, \quad 1 = F \frac{\text{top}}{-(-\text{near})} - B, \\
1 &= F \frac{\text{top}}{\text{near}} - B
\end{align*}
\]

Perspective Derivation

- similarly for other 5 planes
- 6 planes, 6 unknowns

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{r+l}{t-b} & 0 \\
0 & 0 & -(f+n) & -2fn \\
0 & 0 & -1 & f-n
\end{bmatrix}
\]

Perspective Example

view volume

- left = -1, right = 1
- bot = -1, top = 1
- near = 1, far = 4

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{r+l}{t-b} & 0 \\
0 & 0 & -(f+n) & -2fn \\
0 & 0 & -1 & f-n
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -5/3 & -8/3 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Perspective Example

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-5z_{VCS}/3 - 8/3 & -5/3 - 8/3 & -z_{VCS} & 1 \\
-3z_{VCS} & -1 & 1 & 0
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-5/3 - 8/3 & -1 & z_{VCS} & 1 \\
-1 & 0 & 0 & 1
\end{bmatrix}
\]

\[
x_{NDCS} = -1/z_{VCS}
\]

\[
y_{NDCS} = 1/z_{VCS}
\]

\[
z_{NDCS} = \frac{5}{3} + \frac{8}{3z_{VCS}}
\]

Asymmetric Frusta

- our formulation allows asymmetry
- why bother?

Simpler Formulation

- left, right, bottom, top, near, far
- nonintuitive
- often overkill
- look through window center
 - symmetric frustum
- constraints
 - left = -right, bottom = -top

Field-of-View Formulation

- FOV in one direction + aspect ratio (w/h)
- determines FOV in other direction
- also set near, far (reasonably intuitive)

Perspective OpenGL

```c
glMatrixMode(GL_PROJECTION);
gLoadIdentity();
glFrustum(left,right,bot,top,near,far);
or
glPerspective(fovy,aspect,near,far);
```

Demo: Frustum vs. FOV

- Nate Robins tutorial (take 2):
Projection Taxonomy

- **Planar Projections**
 - Perspective: classified by vanishing points
 - One-point perspective
 - Two-point perspective
 - Three-point perspective

- **Parallel Projection**
 - Projectors are all parallel
 - vs. perspective projectors that converge
 - Orthographic: projectors perpendicular to projection plane
 - Oblique: projectors not necessarily perpendicular to projection plane

- **Axonometric Projections**
 - Projectors perpendicular to image plane
 - Select axis lengths
 - Isometric: equal axes
 - Dimetric: equal angles
 - Trimetric: equal angles

- **Oblique Projections**
 - Projectors oblique to image plane
 - Select angle between front and z axis
 - Lengths remain constant
 - Both have true front view
 - Cavalier: distance true
 - Cabinet: distance half

Demos

- Tuebingen applets from Frank Hanisch
 - http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/AppletIndex.html#Transformationen