1. Coordinate Frames \square

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]_{\mathrm{W}}=\left[\begin{array}{rrr}
0 & -1 & 4 \\
-2 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]_{\mathrm{A}}} \\
& {\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]_{\mathrm{A}}=\left[\begin{array}{ccc}
0 & 1 & -1.5 \\
1 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]_{\mathrm{B}}}
\end{aligned}
$$

(a) (3 points) Express point P in each of the three coordinate frames.

$$
\begin{aligned}
& P_{w}(2,0) \\
& P_{A}(-0.5,2) \\
& P_{B}(3,1)
\end{aligned}
$$

(b) (3 points) Express pint V in each of the three coordinate frames.

$$
\begin{array}{ll}
V_{W}\langle 1,2\rangle \text { vector } & \text { see the sketches of } V \\
V_{A}\langle-1,-1\rangle & \text { in the figure above. } \\
V_{B}\langle 0,-1\rangle &
\end{array}
$$

(c) (2 points) Find the 3×3 homogeneous transformation matrix which takes a point from F_{A} and expresses it in terms of F_{W}. Ie., determine M, where $P_{W}=M P_{A}$.

(d) (2 points) Find the 3×3 homogeneous transformation matrix which takes a point from F_{B} and expresses it in terms of F_{A}. Ie., determine M, where $P_{A}=M P_{B}$.

