
CPSC 314 Assignment 5: Shaders, Texture Mapping,
and Basic Lighting

Out: Tue March 13, 2018
Due: Mon March 26, 2018

[24 marks total; worth 8%]

1. The objective of this coding question is to gain hands-on experience with vertex shaders,
fragment shaders, texture mapping, and lighting. See the course web pages for the
starting template.

The code runs in the browser and can thus be run by opening a5.html. You will need
to enable local file access, as you did for Assignment 1, and as described here: https:

//threejs.org/docs/#Manual/Getting_Started/How_to_run_things_locally.

The template code comes with the following keybindings:
a,d,w,s: moves the light source to the left, right, up, and down

You will be making changes to the javascript, a5.js, and the various vertex and fragment
shaders in the HTML file, a5.html. After making edits, a page reload on your browser
will then run your code again. Error messages will be displayed on the javascript console.
Debugging shaders and their compilation errors can be tricky, and so we recommend
testing your code after every change. Something as simple as a missing semicolon in
the shader code requires some effort to find. Always look at the development console
to understand the problems. Scroll to the top to find the line number of the first error
encountered.

Lighting computations are best done in VCS, i.e., eye or camera coordinates. Note that
the shading language allows for component-wise multiplication using a statement such
as: vec4 c = a*b;, where a and b are also of type vec4.

(a) (1 point) Observe the carpet texture while rotating the scene. Note some of the
artifacts of the rendered texture, particularly when seen at glancing angles. Change
the a5.js code to use a better filter. To see a list of the available three.js /

WebGL filters, look at threejs.org -> Documentation -> Textures -> Texture

and look at the .minfilter texture constants that can be assigned.
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(b) (3 points) One of the faces of a small skybox is already in place, the posx face.
Complete the construction of the skybox for the other 5 faces using similar code.
You will need to experiment with different rotations to get these faces into place.
Note: the posx and negx images, i.e., positive and negative x-axis images, are
(for reasons unknown) labelled backwards, so the posx image is located along the
negative x-axis, and vice-versa. The labels for all the other skybox images are
correct. For this assembly, use the current size=10, and spin the camera around
the outside to ensure that all the images join correctly (continuously) at the edges.
Once you have all the pieces in place, change to size=1000.

(c) (4 points) We’ll now be making changes to the fragment shaders, beginning with
the red torus. First, let’s add some parameters that can be set from javascript,
via a uniform variable. As defined on the javascript side, the toonMaterial

definition defines two uniforms: lightPosition and myColor. Add these to the
toonShader code as uniforms, i.e., uniform vec3 lightPosition; and uniform

vec3 myColor;.

Now set the fragment color to myColor. Because gl FragColor is vec4, you’ll need
to use something like gl FragColor = vec4(myColor,1.0); which will append a
fourth opacity value of 1.0 to the color. Verify the results.

Next, we’ll implement a simple diffuse shading model, given by i = N · L. First,
compute a normalized vec3 L that points towards the light source. Note that the
location of the current surface point, in VCS, is given by vcsPosition. Next,
compute a normalized version of the VCS normal. Compute a dot product of
these two quantities to give a scalar intensity i. Now use this intensity to multiply
myColor to give a diffuse-shaded torus of the right color. Verify that the diffuse
lighting follows the light source as you move it using the keypresses given above.

Finally, change your shader to a toon shader, i.e., an image which uses only a small
number of colors to render the image. This can be trivially done by producing a
discretized version of the intensity, i.e., i = 0, 0.25, 0.5, 0.75, 1. This can be done
with the help of the floor function, which rounds down, i.e., floor(3.22) = 3.0.

(d) (4 points) Use a copy of your toonShader (perhaps without the final “toon” part)
to create a diffuse-shading starting point for your holeyShader shader. This new
shader will procedurally generate holes in the object being rendered. First, learn
how to discard a fragment based on its position (both object and VCS coordinates
are available via varying types). For example, if the position lies within a sphere
of a certain radius, the use of if (condition) discard; will create a visible hole.
Next, use the floor function to help create an implicit function that defines a
regular 3D grid of spheres, i.e., via the use of the fractional coordinates. This
should produce rendered surfaces full of holes.
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(e) (4 points) Create a simple procedural bump-map shader. Use a copy of your
toonShader again, this time to give an initial diffuse-shading starting point for
your myBumpShader shader. Use the fixed normal that is provided, i.e., vec 3 N =

normalize(surfNormal);. Create small procedural perturbations to the surface
normal, using sin() and cos(), as a function of the object position. This should
give the square the appearance of a bumpy or wavy surface.

(f) (4 points) Complete a basic environment map shader, which is applied to the Ar-
madillo and the sphere. Your shader only needs to render the environment map for
reflected rays that exit the top of the skybox. I.e., the top of the skybox should
be visibly reflected off the top of the sphere. The remainder of the sphere (or
Armadillo) should be simply rendered as a diffuse-shaded object.

First, compute the incident ray direction, in VCS. This is given by the vcsPosition
and the eye position, which is at the origin of VCS. A reflected ray can be computed
directly as follows: R = reflect(I,N), where the reflect() function is provided
for you in the GLSL shading language. Next, we need to know the reflected vec-
tor in world coordinates in order to do the texture lookup. A multiplication by
matrixWorld achieves this. GLSL directly supports matrix multiplication, i.e.,
newvec = matrix*vec. Lastly, if the positive y component is the largest compo-
nent of the reflected vector, then it will exit through the top plane of the cube. So,
for this case, the u and v coordinates should then be computed, and the texture
color can be retrieved using texture2D(myTexture, vec2(u,v)).

(g) (4 points) Develop an idea of your own for augmenting the scene. Ideas include:
adding animated warps to the geometry in the vertex shader, creating procedural
shaders, implementing a bump map using a texture, or creating an animated tex-
ture. The instructors and TAs will not respond to any questions that ask us to
define this more precisely.

Submit your code using handin cs314 a5.
Include a README.txt file that contains your name, your student number, and any
comments and explanations that you wish to include.
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