
Visibility

Determining which objects / triangles / pixels can be seen

y

z FVCS

near
plane

far
plane

Visibility

Methods

•  view volume culling
•  view volume clipping
•  backface culling
•  occlusion: z-buffer test
•  occlusion: object culling
•  raycasting (and raytracing)

View Volume Culling (for triangles)

y

z FVCS

View Volume Culling (for objects)

y

z FVCS
bounding sphere:

bounding box:

2D Clipping
Sutherland Hodgeman algorithm

View Volume Clipping

general polygon clipping:

tor triangles with bounding-box scan conversion:

Clipping in VCS

Othographic View Volume Perspective View Volume
Plane equations

y

z
FVCS

y

z
FVCS

Clipping in NDCS (?)

NDCS

Clipping in CCS

NDCS:
 CCS:

/h Mproj

PVCS PCCS PNDCS

canonical plane equations:

left: x + h = 0
right: -x + h = 0
bot: y + h = 0
top: -y + h = 0
near: z + h = 0
far: -z + h = 0

h

x,y,z FCCS

Line-Plane intersection

Backface Culling in VCS

y

z

y

z

Backface Culling in NDCS

y

z

y

z

Transforming Normals

Using h=0

Problem

Transforming Normals
consider a plane, before and after transformation:

Occlusion

•  image space algorithms:
–  operate on pixels or scan-lines
–  visibility resolved to the precision of the display
–  e.g.: Z-buffer

•  object space algorithms:
–  explicitly compute visible portions of polygons
–  painter’s algorithm: depth-sorting, BSP trees

view occluded by objects in front of a given
pixel or polygon ?

Z-buffer
store (r,g,b,z) for each pixel

for all i,j {
 Depth[i,j] = MAX_DEPTH
 Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
 project vertices into screen-space, i.e., DCS
 for all pixels in P {
 if (Z_pixel < Depth[i,j]) { // closer?
 Image[i,j] = C_pixel // overwrite pixel
 Depth[i,j] = Z_pixel // overwrite z
 }
 }
}

Z-buffer
•  hardware support
•  extra memory
•  jaggies, i.e., steps along intersections
•  poor performance for high depth complexity scenes;

–  use occlusion culling to mitigate this

Occlusion Culling

•  occlusion queries
-  virtual render of bounding box

•  precomputed visibility tables

–  store a list of visible cells

•  horizon maps
–  for terrain models

Visibility in Practice:
WebGL, OpenGL

Commonly supported by hardware & OpenGL / DirectX
•  view volume culling (for triangles)
•  view volume clipping
•  backface culling
•  z-buffer occlusion test

Software, i.e., on your own
•  view volume culling (for objects)
•  occlusion culling

Raycasting and Raytracing

•  for each pixel p
–  construct ray r from eye through p
–  intersect r with all polygons or objects
–  color p according to closest surface

alternative to projective rendering

