
University of
British Columbia

Ray-Tracing

[Pixar: Ray Tracing for the Movie ‘Cars’
 http://graphics.pixar.com/library/RayTracingCars/paper.pdf]

University of
British Columbia

Ray-tracing Overview

•  handles multiple inter-reflections of light
•  partly physics-based: geometric optics
•  well suited to transparent and reflective objects

Image Plane

Eye

Refracted
Ray

Reflected
Ray

Light
Source

Trace light path from the eye
backwards(!) into the scene;
recursively apply to reflected
and refracted rays.

University of
British Columbia

Ray-Tracing
raytrace(ray) {

 find closest intersection: P 
colour_local = (0,0,0); 
if visible(P,L) // cast shadow ray 
 colour_local = Phong(N,L,rayDir) 
colour_reflect = raytrace(reflected_ray) // if reflective 
colour_refract = raytrace(refracted_ray) // if refractive 
colour = k1*colour_local +  
 k2*colour_reflect + 
 k3*colour_refract 
return(colour)

}

•  “raycasting” : only cast first ray from eye

University of
British Columbia

Image Plane Eye

Refracted Ray
“Transmitted Ray”

Reflected
Ray

Light
Source

Shadow
Rays

University of
British Columbia

Ray termination
•  ray hits a diffuse object
•  ray exits the scene
•  when exceeding max recursion depth
•  when final contribution will be too small

University of
British Columbia

Generation of Rays
•  distance to image plane:
•  image resolution (in pixels):
•  image plane dimensions:
•  pixel

v

w

u
C

d
Nx,Ny
left, right, top,bot

i, j

P0,0 =C + d
!w+ left !u + bot !v

Pi, j = P0,0 + iΔu
!u + jΔv !v

where
Δu = (right − left) / Nx

Δv = (top− bot) / Ny

University of
British Columbia

Ray-Sphere Intersections

Ri, j (t) =C + t ⋅ (Pi, j −C)
=C + t ⋅vi, j

x(t) =Cx +Vxt
y(t) =Cy +Vyt
z(t) =Cz +Vzt

F(x, y, z) = r2 − (x − Sx)
2 − (y− Sy)

2 − (z− Sz)
2

Ray

Sphere

r S
C

V

University of
British Columbia

Ray-Tracing: Optimizations
•  process rays in parallel (multi-core, GPU, �)
•  efficient ray-object culling

•  hierarchical bounding volumes

University of
British Columbia

Ray-Triangle Intersections

