
TEXTURE MAPPING

2

TEXTURE MAPPING
•  real life objects have nonuniform

colors, normals
•  to generate realistic objects,

reproduce coloring & normal
variations = texture

•  can often replace complex
geometric details

TEXTURE MAPPING
• hide geometric simplicity

•  images convey illusion of geometry
•  map a brick wall texture on a flat polygon
•  create bumpy effect on surface

• usually: 2D information associated with a 3D surface

•  point on 3D surface ↔ point in2D texture
•  typically r,g,b colors
•  but can be any attributes that you would like to model over a surface

BUMP MAPS

threejs.org:		materials/bumpmap			

2D	texture	maps	that	are	used	to	model	the	appearance	of	surface	bumps,	
by	adding	small	perturba=ons	to	the	surface	normals.		The	rendered	geometry	
does	not	actually	have	bumps,	i.e.,	it	is	smooth	!!	

VOLUMETRIC TEXTURES
• model r,g,b for every point in a volume
• often computed using procedural function

[Lapped	Solid	Textures,		SIGGRAPH	2008]	

ENVIRONMENT MAP

2	of	6	images	for	a	cube	map;	
as	a	viewer,	you	are	inside	this	cube!	

There	is	an	invisible	corner	seam	in	this	image!	

BASIC TEXTURE MAP

u	

v	

(0,0)	 (1,0)	

(0,1)	

2D	texture	map:		Image	
Pixels	here	are	called	“texels”	

(1,1)	

P(3,3,0)	
T(1,1)	

P(3,0,0)	
T(1,0)	

P(0,0,0)	
T(0,0)	

3D	model:	
u,v	texture	coodinates	
are	assigned	to	ver=ces	
by	ar=st	or	program.	

rendered	image	

interp	

interpolate	(u,v)	from	ver=ces	
using	barycentric	coordinates	

T(1,0)	

T(1,1)	

T(0,0)	

TEXTURE MAPPING EXAMPLE

+ =

FRACTIONAL TEXTURE COORDINATES

(0,0) (1,0)

(0,1)

(0,0) (0.25,0)

(0.25,0.5) (0,0.5) (1,1)

THREE.JS
•  pass texture as a uniform:

var	uniforms	=	{	
				texture1:	{	type:	"t",	value:	THREE.ImageUtils.loadTexture("texture.jpg")	}};	

var	material	=	new	THREE.ShaderMaterial({	uniforms,	…});

•  uv will be passed on to the vertex shader (no need to write this):
attribute	vec2	uv;	

•  use it, e.g., in Fragment Shader:

uniform	sampler2D	texture1;	
varying	vec2	texCoord;	
vec4	texColor	=	texture2D(texture1,	texCoord);	

	

HOW TO USE COLOR TEXTURES

• Replace
•  Set fragment color to texture color

gl_FragColor	=	texColor;	
	

• Modulate
•  Use texture color as reflection color in illumination equation

kd	=	texColor;	ka	=	texColor;	
gl_FragColor	=	ka*ia	+	kd*id*dotProduct	+	…;	

TEXTURE LOOKUP:
TILING AND CLAMPING
• What if s or t is outside [0…1] ?
• Multiple choices

•  Use fractional part of texture coordinates
•  Cyclic repetition (repeat)

•  Clamp every component to range [0…1]
•  Re-use color values from texture

image border

IN THREE.JS
var texture = THREE.ImageUtils.loadTexture("textures/
water.jpg");
texture.wrapS = THREE.RepeatWrapping;
texture.wrapT = THREE.ClampToEdgeWrapping;
texture.repeat.set(4, 4);

14

(1,0)

(0,0) (0,1)

(1,1)

TILED TEXTURE MAP

(4,4) (4,0)

(0,4) (0,0)

RECONSTRUCTION

(image courtesy of Kiriakos Kutulakos, U Rochester)

RECONSTRUCTION
•  how to deal with:

•  pixels that are much larger than texels?
•  minification

•  pixels that are much smaller than texels ?

•  magnification

MIPMAPPING

Without MIP-mapping

With MIP-mapping

use “image pyramid” to precompute
averaged versions of the texture

store whole pyramid in
single block of memory

MIPMAPS
•  multum in parvo -- many things in a small place

•  prespecify a series of prefiltered texture maps of decreasing
resolutions

•  requires more texture storage
•  avoid shimmering and flashing as objects move

•  texture.generateMipmaps = true
•  automatically constructs a family of textures from original

texture size down to 1x1

• texture.mipmaps[…]

without with

MIPMAP STORAGE

• only 1/3 more space required

HOW TO INTERPOLATE S,T?

TEXTURE COORDINATE INTERPOLATION

Linear	interpola=on	
i.e.,	using	barycentric	coordinates	

Perspec=ve	correct	interpola=on	
(see	Scan	Conversion	notes)	

u = α ⋅u1 / h1 +β ⋅u2 / h2 +γ ⋅u3 / h3
α / h1 +β / h2 +γ / h3

u =α ⋅u1 +β ⋅u2 +γ ⋅u3

• Screen space interpolation incorrect under perspective
•  Problem ignored with shading, but artifacts more visible with texturing

INTERPOLATION: SCREEN VS. WORLD SPACE

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

BUMP MAPPING: NORMALS AS TEXTURE
•  object surface often not smooth – to recreate correctly need

complex geometry model
•  can control shape “effect” by locally perturbing surface normal

•  random perturbation
•  directional change over region

BUMP MAPPING
virtual	surface		
created	with	the	bump	map	

normals	corresponding	to	this	
virtual	surface	

Normal/Bump mapping
BUMP MAPPING: LIMITATION

DISPLACEMENT MAPPING

• bump mapping gets silhouettes wrong
•  shadows wrong too

•  change surface geometry instead
•  only recently available with realtime

graphics
•  need to subdivide surface

hWps://en.wikipedia.org/wiki/
Displacement_mapping#/media/
File:Displacement.jpg	

ENVIRONMENT MAPPING
• generate image of surrounding or reflection
•  sphere map or cube map

CUBE MAP

• 6 planar textures, sides of cube
•  point camera in 6 different directions, facing out from origin

•  Cube map: direction of vector selects the face of the cube to be indexed
•  co-ordinate with largest magnitude

•  e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face
•  remaining two coordinates select the pixel from the face.

eye	

image	
plane	

N	 reflected	
ray	

B	

A	

B	

A	
note:		viewpoint	is	
always	at	the	center!	

SPHERE MAP
•  texture is distorted fish-eye view

•  point camera at mirrored sphere
•  spherical texture mapping creates texture coordinates that

correctly index into this texture map

VOLUMETRIC TEXTURE
•  define texture pattern over 3D domain - 3D

space containing the object
•  texture function can be digitized or

procedural
•  for each point on object compute texture

from point location in space
•  e.g., ShaderToy

•  computing is cheap, memory access not as
much

PROCEDURAL TEXTURE EFFECTS:
BOMBING

•  randomly drop bombs of various shapes, sizes and orientation into
texture space (store data in table)

•  for point P search table and determine if inside shape
•  if so, color by shape’s color
•  otherwise, color by object’s color

PROCEDURAL TEXTURES: PERLIN NOISE

•  several good explanations
•  http://www.noisemachine.com/talk1
•  http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
•  http://www.robo-murito.net/code/perlin-noise-math-faq.html

http://mrl.nyu.edu/~perlin/planet/

THE RENDERING PIPELINE
Vertex Shader Vertex Post-Processing

Rasterization

Per-Sample Operations
Framebuffer

Vertices
and attributes Modelview transform

Interpolation

Per-vertex attributes Clipping

Viewport transform

Scan conversion
Fragment Shader

Texturing/...

Lighting/shading

Depth test
Blending

