
CPSC 314 Assignment 5: Illumination Models

Out: Fri March 24, 2017
Due: Wed April 5, 2017

[14 marks total]

1. The objective of this coding question is to gain some further experience with using
texture mapping, vertex shaders, and fragment shaders. You will be implementing the
Phong illumination model and your own environment map using shaders. See the course
web pages for the starting template.

The code runs in the browser and can thus be run by simply opening a5.html. You will
need to enable local file access, as you did for the previous assignments, i.e.,:
https://threejs.org/docs/#Manual/Getting_Started/How_to_run_things_locally.

You will be making changes to the javascript (a5.js), the vertex shaders,
(glsl/phong.vs.glsl, glsl/reflective.vs.glsl), and the fragment shaders
(glsl/phong.fs.glsl, glsl/reflective.fs.glsl).
After making edits, a page reload on your browser will then run your code again. Error
messages will be displayed on the javascript console.

Complete the following modifications to the template code in a5.js and the specified
shaders.

(a) (2 points) Uniform variables: Run the template code in your browser, you should
see three solid black spheres floating in the scene. Currently all three spheres are
being rendered using the Blinn-Phong shaders glsl/blinn phong.vs.glsl and
glsl/blinn phong.fs.glsl. The Blinn Phong shaders require no further modifi-
cations. However, there are no uniform variables being passed to them from the
javascript file, which causes them to be rendered black. For this first part of the
assignment, you need to bind the appropriate javascript values to the uniform vari-
ables of the Blinn-Phong shader material.

• First, look at the uniform variables being used in the fragment shader:
glsl/blinn phong.fs.glsl

• Second, in a5.js, bind the correct values to these uniforms in the assignment
to the blinn phong material.

The lightColorUniform uniform variable has been done for you. You’ll know you
are finished this step when your spheres look like the reference solution,
ref solutions/blinn phong.jpg.

Note: In the current three.js version, uniform variables are attached to individual
shader materials THREE.ShaderMaterial, then vertex and fragment shader pairs are
attached to each of these shader materials, and finally these materials are applied
to the geometries we add to our scene. An easy way to think of this is that a shader
material holds the uniform variables relevant to the vertex and fragment shader pair
attached to it, keeping everything organized in one location and accessible through
the material.

1



CPSC 314 Assignment 5

(b) (4 points) Phong illumination: Now that you are familiar with shader materials,
implement Phong shading and apply it to one of the spheres in your scene. You
will have to attach the correct uniforms to the Phong shader material first, and im-
plement the shader code in both glsl/phong.vs.glsl and glsl/phong.fs.glsl.
The Blinn-Phong model that you have just worked on is a perfect template for de-
veloping your Phong shading model, which will only have minor differences. You’ll
know you are finished this step when your Phong illumination sphere look like the
reference solutions:
ref solutions/phong front.jpg,
ref solutions/phong back.jpg, and
ref solutions/phong back side.jpg.

(c) (4 points) Understanding environment map implementation:

(4 points) Three.js comes with an environment map lookup function,
textureCube(), that makes it trivial to use a direction vector, R, to correctly
access the correct face and texel-within-the-face for a cube map. The reflective
shader material already has the correct uniforms attached, and the vertex shader
shaders/reflective.vs.glsl is already completed for you. Note that the rays
being used are in world coordinates. You only need to finish the fragment shader
shaders/reflective.fs.glsl. Start by changing your last sphere to use the re-
flective shader material. You should see a the sphere reflect the scene around it as
shown in ref solutions/env map.jpg. The fragment shader
shaders/reflective.fs.glsl uses the convenient textureCube() lookup function.
However, in this question you will be implementing your own texture map lookup
for just the top face of the cube map using the sampler2D textureUniform uniform
variable being passed from the javascript file. To finish your texture map lookup:

• First, test that you can correctly identify directions that would be captured by
the top face by assigning those pixels a fixed colour, i.e., green. The details of
this will be discussed in class.

• Second, compute the correct (u, v) texture coordinates from the (Rx, Ry, Rz),
and then use those texture coordinates to do the appropriate texture lookup.

You’ll know you are finished this step when your reflective shader sphere shows a
planet on the top of it, as shown in the example solution image,
ref solutions/env map planet.jpg.

Page 2 of 3



CPSC 314 Assignment 5

(d) (4 points) Creative component: Develop an idea of your own for augmenting the
scene. The expectations here are in line with the limited amount of time available
to complete this assignment. Nevertheless, use this as a last chance to experiment!
You might implement refraction; it is very similar to the reflection used during
environment mapping and therefore requires very few lines of code in the fragment
shader. Furthermore, GLSL comes with a refract() function, which computes the
refraction direciton for an incident direction. Other ideas might relate to building a
more interesting scene, which can be done by adding objects, textures, animation,
and any feature of three.js that you might care to explore. Document what you did
in a README.txt file. Note that we will not be using face-to-face grading, and so
these written explanations are important.

Submit your code using handin cs314 a5.
Include a README.txt file that contains: (a) your name; (b) your student number; (c)
any comments and explanations that you wish to include.

Page 3 of 3


