
CPSC 314 Assignment 4: Introduction to Shaders

Out: Monday March 13, 2017
Due: Friday March 24, 2017

[24 marks total; worth 8%]

1. The objective of this coding question is to gain some hands-on experience with using
texture mapping, vertex shaders, and fragment shaders. See the course web pages for
the starting template.

The code runs in the browser and can thus be run by simply opening a4.html. You
will need to enable local file access, as you did for Assignment 1, and as described here:
https://threejs.org/docs/#Manual/Getting_Started/How_to_run_things_locally.

The template code comes with the following keybindings:
a,s: rotates the scene left and right
space: starts and stops the bunny animation
t: toggles the bunny texture from texture B to texture D.

You will be making changes to the javascript (a4.js), the vertex shader (shaders/mesh vs.glsl),
and the fragment shader (shaders/mesh fs.glsl). After making edits, a page reload on
your browser will then run your code again. Note that error messages will be displayed
on the javascript console.

Complete the following modifications to the template code in a4.js.

(a) (2 points) Change the texture-mapped square, which represents the ground, to be
twice as large, and at the same time it should be centered underneath the bunny.
The ground plane geometry is defined in buildPlane().

(b) (2 points) Change the texture coordinates assigned to the four vertices such that
the texture becomes much finer than it currently is, i.e., so that it repeats four
times in each dimension, for a total of 16 times on the ground plane. The ground
plane texture coordinates are defined in buildPlane(). It is drawn using texture
map A and its parameters, and so to get it to repeat (instead of clamping), you will
need to modify loadTextures().

(c) (2 points) Change the texture map that is used for the bunny from the UBC logo
to something else. Note that it is using texture map B by default, and so you should
be changing that. See the loadTextures() function for where the texture map file
names are specified. Note that the dimensions of images used for texture mapping
must by powers of 2, i.e., 256x256, 512x512, etc. If you like, use psychedelic.png.
Or, better yet, take any image you like, and resize it using your favorite image
resizing application. This is optional, but it can count as one of the “extras” you
do for the last step.

1



CPSC 314 Assignment 4

(d) (4 points) Now you will be changing the cube. First, translate the cube so that it
is sitting on the ground plane instead of penetrating it. Next, change the texture
mapping for the faces of the cube. First, view the image ubcTexture.png, which
is currently used to texture map the cube. Now change the texture coordinates
for each of the cube faces (see buildCube()) in order to map the four individual
sub-images in that texture map to individual faces. Do this in a way that makes
sense, i.e., upright and legible. See the solution image at the start of this question
for an example.

(e) (3 points) We’ll now be making changes to the vertex shader. The goal in this step
is to distort the bunny geometry over time. The time is known via uniform float

u DistortionTime, which is the animation time, in seconds. Also, another variable,
uniform float u DistortionAmp, will be used to control the desired distortion
amplitude. This has a value of zero, except for the bunny, for which it has a value
of 0.05. This will be a way to only apply distortions to the bunny.

Add the code below to the vertex shader, and use it to replace the original newPosition
assignment. Run the code. Something as simple as a missing semicolon will result
in a blank page. For effective debugging, make small changes to the code and look
at the development console to understand the problems. With this code in place,
hitting the spacebar should make the bunny head move up and down. Once this
is working, change the code to do something else that is more interesting or im-
pressive. The instructors and TAs will not respond to any questions that ask us to
define this more precisely.

float yoffset = 0.0;

if (a_Position.y>0.14) {

yoffset = u_DistortionAmp*0.2*(1.0+sin(3.0*u_DistortionTime));

}

vec4 newPosition = vec4(a_Position.x, a_Position.y + yoffset,

a_Position.z, 1.0);

}

(f) (3 points) Now take a look inside the fragment shader, (mesh fs.glsl). The ulti-
mate output of the fragment shader is gl FragColor. Comment out the last line
and add a new line that assigns gl FragColor = u FragColor;. Observe what this
does, i.e., produce a simple flat-shaded rendering without textures. Now the goal
for this step is to give your bunny a ’colour tinted’ texture. Look for the code in
drawScene() where u FragColor is assigned before drawing, i.e.,
gl.uniform4f(prog.uniforms.u FragColor, ... );

Change the colour assignments to something distinct and observe the resulting
change in your ’flat shaded’ rendered version.

Now compute the product of the default colour with the texture-map colour and
use that as the colour for the fragment. Note that the shading language allows for
component-wise multiplication using a statement such as: vec4 c = a*b;, where a

and b are also of type vec4. You should now be able to produce a texture mapped
bunny with a desired color tint.

Page 2 of 3



CPSC 314 Assignment 4

(g) (3 points) We’ll now use the fragment shader to produce an elliptical viewing win-
dow, which touches all four sides of your window and which colours all pixels out-
side of the ellipse black. In the supplied fragment shader, you are already given the
NDCS coordinates of the fragment being rendered. Use this to evaluate an implicit
function, f, for a circle, which will appear as an ellipse on screen because of the
aspect ratio. Replacing the default f=1.0; line with your function should result in
the fragment being assigned the colour black when it is outside the elliptical border.

(h) (5 points) Develop an idea of your own for augmenting the scene. You could add
more bunnies, animate the colours, displace the geometry along the normals, dis-
place texture coordinates as a function of time, etc. The instructors and TAs will
not respond to any questions that ask us to define this more precisely.

Submit your code using handin cs314 a4.
Include a README.txt file that contains: (a) your name; (b) your student number; (c)
any comments and explanations that you wish to include.

Page 3 of 3


