Rendering

Linear Algebra Review vectors

$$
\begin{array}{ll}
a=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] & {\left[\begin{array}{l}
x \\
y \\
2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}
\end{array} \begin{aligned}
& \text { by default, } \\
& \text { assumption } \\
& \text { column vectors }
\end{aligned}
$$

Math Review
dot product

$$
\begin{aligned}
a \cdot b=a^{\top} b & =\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& =|a||b| \cos \theta \\
& =0 \text { when } a \perp b
\end{aligned}
$$

$$
\text { max when a aligned with } b
$$

$$
\min \text { when } a \text { is opp } d r \text {. of } b
$$

Math Review
matrix-vector multiplication
(a)as dot products with the rows
(b) as weighted combinations of the columns

$$
\begin{aligned}
& {\left[\begin{array}{lll}
n & c_{1} & c_{2} \\
c_{2} & \overrightarrow{c_{3}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=v_{1} \overrightarrow{c_{1}}+v_{2} \overrightarrow{c_{2}}+v_{3} \overrightarrow{c_{3}}}
\end{aligned}
$$

Math Review

Right Handed Coordinate System (curl fingers from \mathbf{u} to \mathbf{v}; thumb points to $u \times v$)

$$
\begin{aligned}
& \vec{U} \times \vec{V} \text { is } \perp \text { to } \vec{U} \text { and } \vec{V} \\
& \vec{U} \times \vec{V}=-\vec{V} \times \vec{U}
\end{aligned}
$$

Math Review

Coordinate Systems

Right-handed Coordinate System (typically Used in CG)

using right-hand rule

Left-handed Coordinate System

using left-hand rule

Math Review

Math Review
Coordinate System vs Frame

coordinate system: defined by set of burn
frame: frame: defined by orrin and a set of s positions

Math Review
Working with Frames

$$
\begin{aligned}
& P=O+x \bar{i}+y \dot{j} \\
& \mathrm{~F}_{1} \quad P_{1}(3,-1) \\
& \mathrm{F}_{2} \\
& P_{2}(-1.5,2)=0_{2}-1.5 i_{2}+ \\
& \mathrm{F}_{3} \\
& P_{3}(1,2)=0_{3}+1 i_{3}+2
\end{aligned}
$$

Transformations

Transformations as a change of frame

