
17-04-04	

1	

CPSC 314
 GLOBAL ILLUMINATION

PATH TRACING.

UGRAD.CS.UBC.CA/~CS314

RAY TRACING: PROBLEM?
Image Plane Eye

Refracted
Ray

Reflected
Ray

Light
Source

Shadow
Rays

17-04-04	

2	

RAY TRACING LIMITATION

• Only specular reflections consider other objects
•  Well okay, refractions too

• Diffuse and glossy surfaces will only reflect light source!
• We’re using Lambert and Phong models of direct illumination
• How can we model diffuse/glossy models in a similar way?

PATH TRACING FRAMEWORK
Image Plane Eye

Light
Source

Reflec,ve	object	

Diffuse	object	

Glossy	object	

17-04-04	

3	

PATH TRACING FRAMEWORK
Image Plane Eye

Light
Source

Reflec,ve	object	

Diffuse	object	

Glossy	object	

PATH TRACING FRAMEWORK
Image Plane Eye

Light
Source

Reflec,ve	object	

Diffuse	object	

Glossy	object	

17-04-04	

4	

PATH TRACING FRAMEWORK
Image Plane Eye

Light
Source

Reflec,ve	object	

Diffuse	object	

Glossy	object	

PATH TRACING ALGORITHM

1. Shoot a ray though pixel (i,j). Set attenuation to 1.0.
2. Find the closest intersection of the ray with an object
3. Randomly choose between “emission” and “reflection”

a. If “emission”, return emissionColor;
b. If “reflection”,

Reflect a ray in a random direction
rayWeight *= reflectance;
Go to 2.

17-04-04	

5	

SIMPLEST PATH TRACER

• For all pixels (i,j):
•  Ray r = generateRay (i,j);
•  For k=1,…,N:

•  PixelColor(i,j) += pathTrace(r)/N;

SIMPLEST PATH TRACER
PathTrace(Ray	r)	{	

		P	=	closestIntersection(r);	

		if	(random(emit,	reflect)	==	emit)	

				return	EmissionColor;	

			else	{	

					Ray	v	=	{intersectionPt,		

							randomDirectionInHemisphere(r.normalWhereObjWasHit)};	

			double	cos_theta	=	dot(v.direction,	r.normalWhereObjWasHit);	

			return	PathTrace(v)*cos_theta*reflectance;	

		}	

}	

17-04-04	

6	

 E
X

A
M

P
LE

WHAT YOU GET

17-04-04	

7	

WHAT YOU GET

Area light

Soft shadows

Reflections from
diffuse objects
‘color bleeding’

Noise

17-04-04	

8	

MONTE CARLO METHODS

• General idea: compute something using random sampling
• Used for computing integrals of complex functions
• E.g. areas or volumes

•  If it’s hard to compute analytically
•  But easy to test if a point is inside

•  If we throw enough random samples, by the law of large
numbers, mean ~ empirical mean

MONTE CARLO METHODS
• Example: approximating !:

"Pi 30K" by CaitlinJo - Own work. This mathematical image was created with Mathematica. Licensed under CC BY 3.0 via Commons - https://
commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif

17-04-04	

9	

MONTE CARLO METHODS
• Example: computing a weird integral

"Pi 30K" by CaitlinJo - Own work. This mathematical image was created with Mathematica. Licensed under CC BY 3.0 via Commons - https://
commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif

MONTE-CARLO: RAY TRACING

• Now in RAY tracing, we can generate rays randomly from an
area light source

•  Instead of shooting a single shadow ray,
•  Generate many randomly towards a light source

•  Generate a point on the light source
•  Shoot a ray towards that point

•  Average their contribution

• Soft shadows in RAY tracing!

17-04-04	

10	

SIMPLEST PATH TRACER
PathTrace(Ray	r)	{	

		P	=	closestIntersection(r);	

		if	(random(emit,	reflect)	==	emit)	

				return	EmissionColor;	

		else	{	

				Ray	v	=	{intersectionPt,					

								randomDirectionInHemisphere(r.normalWhereObjWasHit)};	

				double	cos_theta	=	dot(v.direction,	r.normalWhereObjWasHit);	

				return	PathTrace(v)*cos_theta*reflectance;	

		}	

}	

HOW TO GENERATE REFLECTION FOR A GLOSSY SURFACE

538 25. Glossy Refl ection

i nt nun_sampl es = 100;
. . .

f l oat exp = 100. 0;
Gl ossyRef l ect or * gl ossy_pt r = new Gl ossyRef l ect or ;
gl ossy_pt r - >set _sampl es(num_sampl es, exp) ;
gl ossy_pt r - >set _ka(0. 0) ;
gl ossy_pt r - >set _kd(0. 0) ;
gl ossy_pt r - >set _ks(0. 0) ;
gl ossy_pt r - >set _exp(exp) ;
gl ossy_pt r - >set _cd(1. 0, 1. 0, 0. 3) ;
gl ossy_pt r - >set _kr (0. 9) ;
gl ossy_pt r - >set _exponent (exp) ;
gl ossy_pt r - >set _cr (1. 0, 1. 0, 0. 3) ; / / l emon

Listing 25.4. Code fragment from the build function for Figure 25.8.

Figure 25.8. Glossy sphere surrounded by the Uffi zi image and rendered with the follow-
ing values of e: (a) 1.0; (b) 10.0; (c) 100.0; (d) 1000.0; (e) 10000.0; (f) 100000.0.

(a) (c)(b)

(d) (f)(e)

17-04-04	

11	

BACK TO PATH TRACING
•  We know how to reflect a random ray
•  And we know how to choose between “emit” and “scatter” events
•  We can similarly add “absorb”, “reflect”, “refract”

RAY TRACING VS PATH TRACING
• Global illumination algorithms
• Rays emitted FROM camera

• Ray Tracing
•  Single ray per pixel
•  Supports indirect lighting only from specular surfaces

•  No color bleeding
•  Shoots shadow rays to compute direct illumination

•  Soft shadows are harder to get

•  Path Tracing (may produce renders indistinguishable from photos)
•  Many rays per pixel, their color averaged
•  At each interaction, ray direction changes randomly with some distribution
•  No difference between light sources and objects

•  Soft shadows, complex materials, etc.
•  Supports all sorts of indirect lighting

