Transformations 6
Transformation Hierarchies
Scaling and Rotating
Matrix Stacks

- challenge of avoiding unnecessary computation
 - using inverse to return to origin
 - computing incremental $T_1 \rightarrow T_2$

$T_1(x)$ \hspace{2cm} $T_2(x)$ \hspace{2cm} $T_3(x)$

World coordinates \hspace{2cm} Object coordinates
Matrix Stacks

- `pushMatrix()`
- `popMatrix()`

```
D = C scale(2,2,2) trans(1,0,0)
```

```cpp
drawSquare()
pushMatrix()
scale(2,2,2)
translate(1,0,0)
drawSquare()
popMatrix()
```
Modularization

- drawing a scaled square
 - push/pop ensures no coord system change

```c
void drawBlock(float k) {
    pushMatrix();
    scale(k,k,k);
    drawBox();
    popMatrix();
}
```
Matrix Stacks

• advantages
 • no need to compute inverse matrices all the time
 • modularize changes to pipeline state
 • avoids incremental changes to coordinate systems
 • accumulation of numerical errors

• disadvantages
 • not built in to WebGL
 • but easy to implement with Array.pop/push
 • see also
Transformation Hierarchy Example 3

loadIdentity();
translate(4,1,0);
pushMatrix();
rotate(45,0,0,1);
translate(0,2,0);
scale(2,1,1);
translate(1,0,0);
popMatrix();
Transformation Hierarchy Example 4

\[\begin{align*}
\theta_1 & \quad \theta_2 \\
\theta_3 & \quad \theta_4 \\
\theta_5 &
\end{align*} \]

```cpp
translate(x,y,0);
rotate(t1,0,0,1);
DrawBody();
pushMatrix();
\quad translate(0,7,0);
\quad DrawHead();
popMatrix();
pushMatrix();
\quad translate(2.5,5.5,0);
\quad rotate(t2,0,0,1);
\quad DrawUArm();
\quad translate(0,-3.5,0);
\quad rotate(t3,0,0,1);
\quad DrawLArm();
popMatrix();
... (draw other arm)
```
Hierarchical Modelling

- **advantages**
 - define object once, instantiate multiple copies
 - transformation parameters often good control knobs
 - maintain structural constraints if well-designed

- **limitations**
 - expressivity: not always the best controls
 - can’t do closed kinematic chains
 - keep hand on hip
 - can’t do other constraints
 - collision detection
 - self-intersection
 - walk through walls
Transforming Normals
Transforming Geometric Objects

- lines, polygons made up of vertices
 - transform the vertices
 - interpolate between
- does this work for everything? no!
 - normals are trickier
Computing Normals

- normal
 - direction specifying orientation of polygon
 - w=0 means direction with homogeneous coords
 - vs. w=1 for points/vectors of object vertices
 - used for lighting
 - must be normalized to unit length
 - can compute if not supplied with object

\[N = (P_2 - P_1) \times (P_3 - P_1) \]
Transforming Normals

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 0
\end{bmatrix} = \begin{bmatrix}
 m_{11} & m_{12} & m_{13} & T_x \\
 m_{21} & m_{22} & m_{23} & T_y \\
 m_{31} & m_{32} & m_{33} & T_z \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 0
\end{bmatrix}
\]

• so if points transformed by matrix \(\mathbf{M} \), can we just transform normal vector by \(\mathbf{M} \) too?
 • translations OK: \(w=0 \) means unaffected
 • rotations OK
 • uniform scaling OK

• these all maintain direction
Transforming Normals

- nonuniform scaling does not work
- x-y=0 plane
 - line x=y
 - normal: [1,-1,0]
 - direction of line x=-y
 - (ignore normalization for now)
Transforming Normals

• apply nonuniform scale: stretch along x by 2
 • new plane x = 2y
• transformed normal: [2,-1,0]

\[
\begin{bmatrix}
 2 \\
 -1 \\
 0 \\
 0
\end{bmatrix} = \begin{bmatrix}
 2 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 1 \\
 -1 \\
 0 \\
 0
\end{bmatrix}
\]

• normal is direction of line x = -2y or x+2y=0
• not perpendicular to plane!
• should be direction of 2x = -y
Planes and Normals

• plane is all points perpendicular to normal
 • $N \cdot P = 0$ (with dot product)
 • $N^T \cdot P = 0$ (matrix multiply requires transpose)

$$
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix} =
$$

• explicit form: plane = $ax + by + cz + d$
Finding Correct Normal Transform

• transform a plane

\[
\begin{align*}
P & = MP \\
N' & = QN
\end{align*}
\]
given M, what should Q be?

stay perpendicular

substitute from above

\[
(AB)^T = B^T A^T
\]

\[
N^T P = 0 \text{ if } Q^T M = I
\]

thus the normal to any surface can be transformed by the inverse transpose of the modelling transformation