Intro

Week 1, Mon Jan 4

http://www.ugrad.cs.ubc.ca/~cs314
Outline

• course content overview
• structure/logistics
• discuss: CG or photo?
 • (if time permits)
Course Content Overview
What is Computer Graphics?

• create or manipulate images with computer
 • this course: algorithms for image generation
What is CG used for?

- movies
 - animation
 - special effects
What is CG used for?

- computer games
What is CG used for?

- images
 - design
 - advertising
- art
What is CG used for?

- virtual reality / immersive displays
What is CG used for?

- graphical user interfaces
 - modeling systems
 - applications
- simulation & visualization
This Course

• we cover
 • basic **algorithms** for
 • rendering – displaying models [focus]
 • modeling – generating models [tidbits]
 • animation – generating motion [tidbits]
 • programming in WebGL/Javascript

• we do not cover
 • art/design issues
 • commercial software packages
Other Graphics Courses

- CPSC 426: Computer Animation
 - offered next year (2016-2017)
- CPSC 424: Geometric Modeling
 - offered 2017-2018
- CPSC 526: Computer Animation
- CPSC 533A: Digital Geometry
- CPSC 533B: Animation Physics
- CPSC 547: Information Visualization
- CPSC 530P: Sensorimotor Computation
Rendering

- creating images from models
 - geometric objects
 - lines, polygons, curves, curved surfaces
 - camera
 - pinhole camera, lens systems, orthogonal
 - shading
 - light interacting with material
- illustration of rendering capabilities
 - Shutterbug series by Williams and Siegel using Pixar's Renderman
 - www.siggraph.org/education/materials/HyperGraph/shutbug.htm
Modelling Transformation: Object Placement
Viewing Transformation: Camera Placement
Perspective Projection
Depth Cueing
Depth Clipping
Colored Wireframes
Hidden Line Removal
Per-Polygon Shading
Gouraud Shading
Specular Reflection
Phong Shading
Curved Surfaces
Complex Lighting and Shading
Texture Mapping
Displacement Mapping
Reflection Mapping
Modelling

- generating models
 - lines, curves, polygons, smooth surfaces
 - digital geometry
Animation

- generating motion
 - interpolating between frames, states

http://www.cs.ubc.ca/~van/papers/doodle.html
Structure and Logistics
Course Information

• course web page is main resource
 • http://www.ugrad.cs.ubc.ca/~cs314/
 • updated often, reload frequently

• discussion group: Piazza
 • signup: https://piazza.com/ubc.ca/winterterm22015/cpsc314
 • standard: https://piazza.com/class/iixq3j3lemq4br
 • use Piazza, not direct email, for all questions
 • make posts private if you need to post your code
 • bonus marks for significant Piazza contributions
Teaching Staff

• instructor: Tamara Munzner
 • call me Tamara or Prof. Munzner, your choice
 • tmm@cs.ubc.ca
 • office hrs in ICICS/CS 005 (our lab)
 • Fridays right after class, 2-3
 • or by appointment in X661

• TAs: Glen Berseth, Silver Burla, Joao Cardoso, Qian Zhou
 • gberseth@cs, suisse_silver@hotmail, jaliborc@cs, qzhou@ece
Expectations

• substantial course!
 • heavy programming and heavy math
• fun course!
 • graphics programming is addictive, make great demos
• programming prereq
 • CPSC 221 (Program Design and Data Structures)
 • or both of CPSC 260 and EECE 320
• math prereq
 • one of MATH 200 (Calc III) or MATH 253 (Multivar Calc)
 • one of MATH 152 (Linear Systems) or MATH 221 (Matrix Algebra) or MATH 223 (Linear Algebra)
Course Structure

- 39% projects (programming)
 - 8% project 1: building beasties with shapes and math
 - 8% project 2
 - 8% project 3
 - 15% project 4: create your own graphics game
- 25% final (date TBA)
- 20% midterm (date TBA)
- 16% theory (written assignments/homeworks)
 - 4% each HW 1/2/3/4
- theory and programming projects interleaved
Programming Projects

- structure
 - WebGL / JavaScript
 - cross-platform, works on any modern browser
 - template code will be provided for projects 1-3
 - face to face grading in lab
- 4 projects
 - P1: building beasties
 - previous years: bison, spiders, armadillos, giraffes, frogs, elephants, birds, poodles, dinos, cats…
 - P2, P3: TBA
 - P4: create your own graphics game
- online Hall of Fame for P1 and P4
 - I’ll also show off best of project 1 in class
Face to Face Grading

- all programming projects marked this way
 - TAs mark projects 1/2/3, I mark project 4 myself
- 10 min sessions in lab, signups posted before due date
 - arrive at least 5 min before your timeslot to set up
 - show timestamps on files (terminal window or file browser)
 - do not edit code after handin! if you discover problem, copy to fresh directory and edit there
- run code to give brief demo of required/extra functionality
- brief walkthrough of your code with marker in editor
- marker asks you questions about both high-level algorithms and low-level code
Late Work

- 3 grace days
 - for unforeseen circumstances
 - no explanations needed/wanted
 - strong recommendation: don’t use early in term
 - handing in late uses up automatically
 - unless you tell us otherwise
- otherwise: 50% if one day (24 hrs) late, 0% afterwards
- **only** exception: severe illness or crisis
 - as per UBC rules
 - must let me know ASAP (in person or email)
 - at latest, 7 days after return to school
 - **must** also turn in form
 - with documentation (eg doctor note)

Regrading

- to request assignment or exam regrade
 - give me paper to be regraded, and also in writing
 - what problem you're disputing
 - detailed explanation why you think grader was wrong
 - I will not accept until next class after solutions handed out
 - exception: simple arithmetic errors
- I may regrade entire assignment
 - thus even if I agree with your original request, your score may nevertheless end up higher or lower
Labs

- labs start next week, no labs this week
- attend one (or more) labs per week (in CS 005)
 - Wed 3-4, Thu 1-2, Fri 1-2
 - TA coverage TBA
- mix of activities
 - help with programming projects (office hours)
 - walking through example theory questions
 - tutorials on tools/languages
- no deliverables (unlike intro classes)
- strongly recommend that you attend
 - if you can’t attend your regular one and/or want more help, drop by another (if there’s space)
- there will also be extra TA office hours tied to deadlines
 - times TBA
Textbooks: Recommended Resources

• Foundations of 3D Computer Graphics
 • Steven Gortler, MIT Press
 • free online through UBC
 http://resolve.library.ubc.ca/cgi-bin/catsearch?bid=7005713

• Fundamentals of Computer Graphics
 • Peter Shirley, AK Peters
 • free online through UBC (2nd ed)
 http://resolve.library.ubc.ca/cgi-bin/catsearch?bid=7755681

• readings will be posted on schedule page
 • encouraged but not mandatory
 • pick whichever book suits your style