L3. Points and Vectors

Objectives: - Distinguish between points and vectors
 - How to represent these
 • In a computer program (coordinates)
 • In mathematics (notation)

A point is a location in space. If you know a distinguished point, which we can call "origin"

\[\vec{O} + \vec{p} \]

\[\vec{O} \text{ is a displacement vector} \]

\[\vec{p} = \vec{O} + \vec{v} \]

There are other kinds of vectors: velocity, normals, ...
Vector space

\[V = \sum_{i=1}^{\infty} a_i b_i, \quad \text{if } a_i, b_i \in V \]
\[\lambda a_i \in V, \quad \text{if } a_i \in V \]

Basis \(\{ b_1, b_2, \ldots \} \)

for any \(\vec{v} = \alpha_1 b_1 + \alpha_2 b_2 \)

coordinates of \(\vec{v} \) in the basis

A basis is a linearly independent set of vectors, which is complete for \(V \).
The size of the basis is called the dimension of \(V \).
The basis is not unique.

Why do we need this? Given no coordinates

Orthonormal basis

Suppose we have a "dot" product \(\vec{v}_1 \cdot \vec{v}_2 \) scalar

can define \(\vec{v}_1 \cdot \vec{v}_2 = ||v_1|| ||v_2|| \cos \theta \), where \(||v_i|| \) is a norm

can "normalize" a vector, i.e.,
\[\frac{\vec{v}}{||v||} = \frac{1}{||v||} \vec{v} \]
Two vectors are orthogonal if \(\vec{a} \cdot \vec{b} = 0 \).

A basis in which all vectors are mutually orthogonal, and have norm = 1, is called "orthonormal".

Dot product of 2 vectors in an orthonormal basis has a simple form:

\[
\begin{align*}
\vec{u} &= u_1 \vec{b}_1 + u_2 \vec{b}_2 \\
\vec{v} &= v_1 \vec{b}_1 + v_2 \vec{b}_2 \\
\vec{u} \cdot \vec{v} &= u_1 v_1 \vec{b}_1 \cdot \vec{b}_1 + u_1 v_2 \vec{b}_1 \cdot \vec{b}_2 + \cdots \\
&= u_1 v_1 + u_2 v_2
\end{align*}
\]

This is why orthonormal is great, we'll use it whenever possible.

Important Notation

<table>
<thead>
<tr>
<th>Important</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>Point</td>
</tr>
<tr>
<td>(\vec{v})</td>
<td>Vector</td>
</tr>
<tr>
<td>(\vec{a})</td>
<td>Column Matrix</td>
</tr>
<tr>
<td>(a)</td>
<td>Row Matrix</td>
</tr>
</tbody>
</table>

Just involves scalars!

S. Change from Book.

\[
\begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix}
\]