Sampling

Dinesh K. Pai

Textbook Chapter 16

Several slides courtesy of M. Kim

Today

- Announcements
 - Reminder: Quiz 3 on Friday
 - I will post a couple of Quiz 3 practice questions on Piazza today. Will discuss answers on Wednesday
- Projector Texture mapping tips (need for A4)
- Sampling and Aliasing
Projector texture mapping tips

- Read Texture Viewport (Textbook 12.3)
- Check out this excellent demo of transformations: http://www.realtimerendering.com/udacity/transforms.html

Viewport

- Convention in text: pixel centers are integers.
- Warning: OpenGL docs usually assume bottom left corner of each pixel has integer coordinates.
- Pixels are not points!
Viewport matrix

- We need a transform that maps the lower left corner to $[-0.5, -0.5]^t$ and upper right corner to $[W - 0.5, H - 0.5]^t$
- The appropriate scale and shift can be done using the viewport matrix:

$$
\begin{bmatrix}
 x_w \\
y_w \\
z_w \\
1
\end{bmatrix} =
\begin{bmatrix}
W / 2 & 0 & 0 & (W - 1) / 2 \\
0 & H / 2 & 0 & (H - 1) / 2 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_n \\
y_n \\
z_n \\
1
\end{bmatrix}
$$

Sampling
Two views of images

- A continuous image, \(I(x_w, y_w) \), is a bivariate function.
 - range is a linear color space.
- A discrete image \(I[i][j] \) is a two dimensional array of color values.
- We associate each pair of integers \(i, j \), with the continuous image coordinates \(x_w = i \) and \(y_w = j \)

Sampling

- The simplest and most obvious method to go from a continuous to a discrete image is by point sampling.
- To obtain the value of a pixel \(i, j \), we sample the continuous image function at a single integer valued domain location:
 \[
 I[i][j] \leftarrow I(i, j)
 \]
- This can results in unwanted artifacts.
Aliasing and anti-aliasing

Aliasing
- Scene made up of black and white triangles: jaggies at boundaries
 - Jaggies will crawl during motion
- If triangles are small enough then we get random values or weird patterns.
Aliasing

- The heart of the problem: too much information in one pixel

Anti-aliasing

- Intuitively: the single sample is a bad value, we would be better off setting the pixel value using some kind of average value over some appropriate region.
- In the above examples, perhaps some gray value.
Anti-aliasing

- Mathematically this can be modeled using Fourier analysis.
 - Breaks up the data by “frequencies” and figures out what to do with the un-representable high frequencies.

\[
I[i][j] \leftarrow \iint_{\Omega} I(x,y)F_{i,j}(x,y)dxdy
\]

- We can also model this as an optimization problem.
- These approaches lead to:
 - where \(F_{i,j}(x,y) \) is some function that tells us how strongly the continuous image value at \([x,y]^T\) should influence the pixel value \(i, j\)
Anti-aliasing

- In this setting, the function \(F_{i,j}(x,y) \) is called a filter.
 - In other words, the best pixel value is determined by performing some continuous weighted averaging near the pixel's location.
 - Effectively, this is like blurring the continuous image before point sampling it.

- Switch to tablet
Images in 1D

\[I(x) \text{ continuous image, } I[i] \text{ discrete image} \]

Filter \(\equiv \) weighted average
\[\int I(x) F(x) \, dx \]

extent of pixel

\[F(x) = \text{Box Filter} \]
\(\equiv \) uniformly weighted average in a single pixel
\(\equiv \) if inside pixel, average

Optimal filter may look like this (e.g., sinc)

Oversampling

\[\sum I[sj] / N \]

\[\int I(x) F(x) \, dx \]
Box filter

- We often choose the filters $F_{i,j}(x,y)$ to be something non-optimal, but that can more easily computed with.
- The simplest such choice is a box filter, where $F_{i,j}(x,y)$ is zero everywhere except over the 1-by-1 square center at $x = i, y = j$.
- Calling this square $\Omega_{i,j}$, we arrive at

$$I[i][j] \leftarrow \iint_{\Omega_{i,j}} I(x,y) \, dx \, dy$$

Box filter

- In this case, the desired pixel value is simply the average of the continuous image over the pixel’s square domain.
Over-sampling

- Even that integral is not really easy to compute
- Instead, it is approximated by some sum of the form:
 \[I[i][j] \leftarrow \frac{1}{n} \sum_{k=1}^{n} I(x_k, y_k) \]
 where \(k \) indexes some set of locations \((x_k, y_k) \) called the sample locations.
- The renderer first produces a “high resolution” color and z-buffer “image”,
 - where we will use the term sample to refer to each of these high resolution pixels.

Then, once rasterization is complete, groups of these samples are averaged together, to create the final lower resolution image.
Super-sampling

- If the sample locations for the high resolution image form a regular, high resolution grid, then this is called *super sampling*.
- We can also choose other sampling patterns for the high resolution “image”,
 - Such less regular patterns can help us avoid systematic errors that can arise when using the sum to replace the integral.

Multi-sampling

- Render to a “high resolution” color and z-buffer
- *During the rasterization* of each triangle, “coverage” and z-values are computed at this sample level.
- But for efficiency, the fragment shader is only called *only once per final resolution pixel*.
 - This color data is shared between all of the samples hit by the triangle in a single (final resolution) pixel.
 - Once rasterization is complete, groups of these high resolution samples are averaged together.