CPSC 314
Computer Graphics

Dinesh K. Pai
Hierarchies, A1 Spotlight

Announcements

- My office hour will move (after this week) to Thursday morning 10-11am. Reason: I have another repeating Faculty of Science meeting scheduled for Thursday afternoons 😞
- Quiz 1 will be handed back later this week. Will discussion solutions in class after handback
- Assignment 2 available soon (probably by tomorrow)
Today

- Assignment 1 Spotlight
- Wrap up of transformations

A1 Spotlight

- Purpose: to share some interesting student work for Part 2 (“Creative License”)
- This is not meant to represent a “best of” .. i.e., this is not a competition. There are no extra marks for this. It’s just a sample of the great work submitted.
- If your assignment was picked it does not necessarily mean that it wasn’t as interesting. We only have a limited amount of time.
Dynamic Deformation with DyRT [James & Pai 02]

Dynamic
physically-based modal deformation
Response
to bone-based animation
Textures
precomputed, sampled, and rendered
almost entirely on graphics hardware

DyRT Vertex Program:
Displacement Example
DyRT movie

Laparoscopic example

[James & Pai 02]
Transformations, wrap up

- Homogenous coordinates and transformations are fundamental to computer graphics.
- Scene graphs and hierarchies (brief intro)
- Three.js support for hierarchies
- Assignment 2

E.g. a robot hierarchy
Chapter 5.4 of textbook
Three.js support

- Reviewed documentation at http://threejs.org/ especially http://threejs.org/docs/#Reference/Core/Object3D
- Object3D is the basic scene graph node

A closer look at “lookAt”

Input: \(\hat{p}, \hat{v}, \hat{u} \)

\[\hat{z} = \text{normalize}((\hat{v} - \hat{p})) \]
\[\hat{x} = \text{normalize}(\hat{u} \times \hat{z}) \]
\[\hat{y} = \hat{z} \times \hat{x} \]

\[\begin{bmatrix} \hat{x} & \hat{y} & \hat{z} & \hat{p} \end{bmatrix} \text{ in world coords} \]
A closer look at “lookAt”

- Book description in 5.2.3 has a bug, fixed in online Errata (make this and other corrections in your textbook copy)
 - \(z = \text{normalize}(p - q) \)
 - \(x = \text{normalize}(u \times z) \)
 - \(y = (z \times x) \)
- The book’s “lookAt” is the inverse of Three.js’s camera.lookAt() method
- The author is aware of these issues, will fix it in future editions