Data Types
- quantitative
 - lengths: 10 inches, 17 inches, 23 inches
- ordered
 - sizes: small, medium, large
 - days: Mon, Tue, Wed, ...
- categorical
 - fruit: apples, oranges, bananas

Channel Ranking Varies By Data Type
- quantitative
- ordered
- categorical

Integral vs. Separable Dimensions
- not all dimensions separable

Preattentive Visual Channels
- color alone, shape alone: preattentive
- combined color and shape: requires attention
- search speed linear with distractor count

External Representation: Topic Graphs
- hard to find topics two hops away from target
- Paradoxes - Lewis Carroll
- Turing - Halting problem
- Paradoxes - Infinity
- Infinity - Lewis Carroll
- Infinity - Unpredictably long searches
- Infinity - Recursion
- Infinity - Zeno
- Infinity - Paradoxes
- Lewis Carroll - Zeno
- Lewis Carroll - Workplay

Visual Encoding Example: Scatterplot
- x position
- y position
- hue
- size

Visual Encoding
- attributes
 - parameters
 - control mark appearance
 - separable channels flowing from retina to brain

Visual Encoding
- marks: geometric primitives
- points, lines, areas
- attributes
 - position
 - size
 - grey level
 - texture
 - color
 - orientation
 - shape

Visual Encoding
- [Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann 1999.]

Preattentive Visual Channels
- color alone, shape alone: preattentive

Automatic Node-Link Graph Layout
- manual: hours, days
- automatic: seconds

Why Do Visualization?
- pictures help us think
 - substitute perception for cognition
 - external memory: free up limited cognitive/memory resources for higher-level problems

Reading
- FCG Chap 27

Visualization Design Layers
- depends on both data and task
- Anscornbe’s quartet:
 - same
 - mean
 - variance
 - correlation coefficient
 - linear regression line

Visualization
- interactive visual representation of abstract data
 - help human perform some task more effectively
 - bridging many fields
 - computer graphics: interact in realtime
 - cognitive psychology: find appropriate representation
 - HCI: use task to guide design and evaluation
 - external representation
 - reduces load on working memory
 - offload cognition
 - familiar example: multiplication/division
 - infovis example: topic graphs

Information Visualization
- interactive visual representation of abstract data
- help human perform some task more effectively
- bridging many fields
- computer graphics: interact in realtime
- cognitive psychology: find appropriate representation
- HCI: use task to guide design and evaluation
- external representation
- reduces load on working memory
- offload cognition
- familiar example: multiplication/division
- infovis example: topic graphs
Preattentive Visual Channels
- preattentive channels include
 - hue
 - shape
 - texture
 - length
 - size
 - orientation
 - curvature
 - intensity
 - flicker
 - direction of motion
 - stereoscopic depth
 - lighting direction
 - many more...

(Coloring Categorical Data)
- 22 colors, but only ~8 distinguishable

(Coloring Categorical Data)
- discrete small patches separated in space
- limited distinguishability: around 8-14
- channel dynamic range low
- best to choose bins explicitly
- maximal saturation for small areas

(Quantitative Colormaps)
- dangers of rainbows
 - perceptually nonlinear
 - arbitrary not innate ordering
- other approaches
 - explicitly segmented colormaps
 - monotonically increasing/decreasing luminance, plus hue to semantically distinguish regions

(3D vs 2D Representations)
- curve comparison difficult; perspective distortion, occlusion
- dataset is abstract, not inherently spatial
- after data transformation to clusters, linked 2D views of representative curves show more

(Space vs Time: Showing Change)
- animation: show time using temporal change
- good: show process
- good: flip between two things
- bad: flip between many things
- interference between intermediate frames

(Space vs Time: Showing Change)
- small multiples: show time using space
- overview: show each time step in array
- compare: side by side easier than temporal
- external cognition vs internal memory
- general technique, not just for temporal changes

(Composite Views: Glyphs)
- internal structure where subregions have different visual channel encodings

(Adjacent Multiple Views)
- different visual encodings show different aspects of the data
- linked highlighting to show where contiguous in one view distributed within another

(Adjacent Views)
- overview and detail
- same visual encoding, different resolutions
- small multiples
- same visual encoding, different data

(Data Reduction)
- overviews as aggregation
- focus+context
- show details embedded within context
- distortion: TreeJuxtaposer video
- filtering: SpaceTree demo

(Dimensionality Reduction)
- mapping from high-dimensional space into space of fewer dimensions
- generate new synthetic dimensions
- why is lower-dimensional approximation useful?
- assume true/intrinsic dimensionality of dataset is (much) lower than measured dimensionality!
- only indirect measurement possible?
 - fisheries: want spawn rates.
 - X-ray: CT scan, MRI
 - sparse data in verbose space?
 - documents: word occurrence vectors, 10K+ dimensions, want dozens of topic clusters

(DR Example: Image Database)
- 4096 D (pixels) to 2D (hand gesture)
- no semantics of new synthetic dimensions from alg.
- assigned by humans after inspecting results

(DR Technique: MDS)
- multidimensional scaling
 - minimize differences between interpoint distances in high and low dimensions
 - minimize objective function: stress
 \[
 \text{stress}(D, \Delta) = \frac{1}{N} \sum_{i,j} (d_{ij} - \Delta_{ij})^2
 \]
 - D: matrix of low D distances
 - \(\Delta \): matrix of high distances

(Parallel Coordinates)
- only two orthogonal axes in the plane
- instead, use parallel axes!

(Outside In excerpt. www.geom.uiuc.edu/docs/outreach/oi/evert.mpg)

[Edward Tufte. The Visual Display of Quantitative Information, p 172]
Parallel Coordinates

- point in Cartesian coords is line in par coords
- point in par coords is line in Cartesian n-space

[Inselberg and Dindele. Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry. IEEE Visualization '90.]

Hierarchical Parallel Coords: LOD

- minimize
 - crossings, area, bends/curves
 - angular resolution, symmetry
- most criteria individually NP-hard
- cannot just compute optimal answer
- heuristics: try to find something reasonable
- criteria mutually incompatible

Node-Link Graph Layout

- minimize
 - crossings, area, bends/curves
- maximize
 - angular resolution, symmetry
- criteria mutually incompatible

Cushion Treemaps

- show structure with shading
- single parameter controls global vs local view

van Wijk and van de Wetering. Cushion Treemaps. Proc InfoVis 1999

Beyond 314: Other Graphics Courses

- 424: Geometric Modelling
 - was offered this year
- 426: Computer Animation
 - will be offered next year
- 514: Image-Based Rendering - Heidrich
- 526: Algorithmic Animation - van de Panne
- 533A: Digital Geometry - Shaffer
- 533B: Animation Physics - Bridson
- 547: Information Visualization - Munzner

Beyond UBC CS

- SIGGRAPH conference back in Vancouver August 2014!
 - 19K-20K people: incredible combination of research, entertainment, art
 - Electronic Theater, Exhibit, ETech, ...
 - pricey: but student rate, student volunteer program
 - local SIGGRAPH chapter
 - talk series, SPARK FX festival, ...
 - http://siggraph.ca

Now What?