Visualization

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Information Visualization

- interactive visual representation of abstract data - help human perform some task more effectively - bridging many fields
- computer graphics: interact in realtime
- cognitive psychology: find appropriate representation - HCI: use task to guide design and evaluation
- external representation
- reduces load on working memory
- offload cognition
- familiar example: multiplication/division
- infovis example: topic graphs

External Representation: Topic Graphs

- hard to find topics two hops away from target [Godel, Escher, Bach: The Eternal Golden Braid. Hofstadter 1979]

xes - Lewis Carroll	Halting problem - Decisi
Turing - Halting problem	procedures
Halting problem - Infinity	Bloop and Floop -
Paradoxes - Infinity	Halting problem - U long searches
Infinity - Lewis Carroll	BlooP and FlooP - Unpredict
Infinity - Unpredictably long searches	long searches BlooP and FlooP - Recursion
Infinity - Recursion	Tarski - Truth vs. provability
Infinity - Zeno	Tarski - Epimenides
Infinity - Paradoxes	Tarski - Undecidability
Lewis Carroll - Zeno	Paradoxes - Sel [...]

- Paradoxes - Lewis Carroll Turing - Halting problem
Hating problem - Infinity Paradoxes - Infinity Infinity - Unpredictably long searches Infinity - Recursion
Infinity - Zeno Infinity - Paradoxes
Lewis Carroll - Zeno
Lewis Carroll - Wordplay

Reading

- FCG Chap 27
- N/A 2nd edition, available online at
http://www.cs.ubc.ca/labs/imager/tr/2009/VisChapter
- offload cognition to visual system

Why Do Visualization?

- pictures help us think
- substitute perception for cognition
external memory: free up limited cognitive/memory resources for higher--level problems

When To Do Vis?

- need a human in the loop augment, not replace, human cognition
for problems that cannot be (completely) automated
- simple summary not adequate statistics may not adequately characterize complexity of
dataset distribution dataset distribution
Anscombe's quartet: same
- mean
variance
correlation coefficient - linearear regression line

Visualization Design Layers - depends on both data and task

Visual Encoding
marks: geometric primitives
points lines areas

attributes

Visual Encoding Example: Scatterplot

- x position
- y position
- hue
- size

[too. Gensene efal 1973
Data Types
- quantitative
- lengths: 10 inches, 17 inches,
23 inches
- ordered
- sizes: small, medium, large
- days: Mon, Tue, Wed, ...
- categorical
- fruit: apples, oranges,
bananas

Channel Ranking Varies By Data Type

Integral vs. Separable Dimensions

- not all dimensions separable

[Colin Ware, Intormation Visualization: Perception for Design. Morgan Kaufmann 1999.]

Preattentive Visual Channels

- color alone, shape alone: preattentive

- combined color and shape: requires attention - search speed linear with distractor count

Coloring Categorical Data

- 22 colors, but only ~ 8 distinguishable 0 . . or

Coloring Categorical Data

- discrete small patches separated in space
- limited distinguishability: around 8-14
- channel dynamic range low
- best to choose bins explicitly
- maximal saturation for small areas

[Colin Ware, Intormation Visualization: Perceppion for Design. Morgan Kautmann 1999,

Space vs Time: Showing Change

Space vs Time: Showing Change

- animation: show time using temporal change - good: show process
- good: flip between two things
- bad: flip between between many things - interference between intermediate frames
small multiples: show time using space - overview: show each time step in array
- compare: side by side easier than temporal - external cognition vs internal memory
- general technique, not just for temporal changes

Quantitative Colormaps

dangers of rainbows

perceptually nonlinear

- arbitrary not innate ordering
- other approaches
- explicitly segmented colormaps
monotonically increasing/(decreasing) luminance,
plus hue to semantically distinguish regions

Composite Views

curve comparison difficult: perspective distortion, occlusion dataset is abstract, not inherently spatial after data transformation to clusters, linked 2D views of
representative curves show more

Ivan Wijk and van Selow, Cluster and Calendar based Visualization of Time Series Data, Intiovise?

Composite Views: Glyphs

- internal structure where subregions have different visual channel encodings

Dimensionality Reduction

mapping from high-dimensional space into space of
fewer dimensions

- generate new synthetic dimensions
why is lower-dimensional approximation useful? - assume true/intrinsic dimensionality of dataset is (much) lower than measured dimensionality!
- only indirect measurement possible?
fisheries: want spawn rates.
have water color, air temp, catch rates
sparse data in verbose space
documents : word
documents: word occurrence vectors.
$10 \mathrm{~K}+$ dimensions, want dozens of topic clusters

Adjacent: Multiple Views
different visual encodings show different aspects of the data linked highlighting to show where contiguous in one view
distributed within another n another

Adjacent Views

- overview and detai
- same visual encoding, different resolutions
- small multiples
- same visual encoding, different data

Data Reduction

- overviews as aggregation
- focus+context
- show details embedded within context
- distortion: TreeJuxtaposer video
- filtering: SpaceTree demo

DR Example: Image Database

- 4096 D (pixels) to 2D (hand gesture)
- no semantics of new synthetic dimensions from alg.
- assigned by humans after inspecting results

DR Technique: MDS

- multidimensional scaling
minimize differences between interpoint distances in high and low dimensions
- minimize objective function: stress
$\operatorname{stress}(D, \Delta)=\sqrt{\frac{\sum_{i j}\left(d_{i j}-\delta_{i j}\right)^{2}}{\sum_{i j} \delta_{i j}^{2}}}$
D: matrix of lowD distances $d_{i j}$
Δ : matrix of hiD distances $\delta_{i j}$
- Glimmer: MDS on the GPU

Parallel Coordinates

- only two orthogonal axes in the plane
- instead, use parallel axes!

point in Cartesian coords is line in par coords point in par coords is line in Cartesian n-space

nselberg and Dimdale. Parallel Coordinates: A Tool for Visualizing
Muti-Dimensional Geometry. IEEE Visualization '90.]

Hierarchical Parallel Coords: LOD

[Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. Fua, Ward, and Rundensteiner. IEEE Visualization '99.]
nodes: repel like magnets Start from random po
run to convergence
very well studied area many people reinvent the wheel

.pdf ${ }^{37}$

Par Coords: Correllation

 ${ }_{3}{ }^{3}$

Interactive Graph Exploration

- geometric and semantic fisheye
van Ham and van Wijk. Interactive Visualization of Small World Graphs.

Treemaps

- containment rather than connection
- emphasize node attributes, not topological structure

Node-Link Graph Layout

- minimize

- crossings, area, bends/curves

- maximize

- angular resolution, symmetry
- most criteria individually NP-hard
- cannot just compute optimal answer

heuristics: try to find something reasonable
- criteria mutually incompatible

Cushion Treemaps

- show structure with shading
- single parameter controls global vs local view

Beyond 314: Other Graphics Courses

- 424: Geometric Modelling
- was offered this year

426: Computer Animation
will be offered next year
Now What?

- 514: Image-Based Rendering - Heidrich
- 526: Algorithmic Animation - van de Panne
- 533A: Digital Geometry - Sheffer

537: Animation Physics Bridson
-547: Information Visualization - Munzner

Beyond UBC CS

- SIGGRAPH conference back in Vancouver August 2014!
- $15 \mathrm{~K}-20 \mathrm{~K}$ people: incredible combination of research, entertainment, art
- Electronic Theater, Exhibit, ETech, .
- pricey: but student rate, student volunteer program
- local SIGGRAPH chapter
- talk series, SPARK FX festival, ...
- http://siggraph.ca

