Reading for This Module

- FCG Chapter 7 Viewing
- FCG Section 6.3.1 Windowing Transforms
- RB rest of Chap Viewing
- RB rest of App Homogeneous Coords
- RB Chap Selection and Feedback
- RB Sec Object Selection Using the Back Buffer
 - (in Chap Now That You Now)

Using Transformations

- three ways
 - modelling transforms
 - place objects within scene (shared world)
 - affine transformations
 - viewing transforms
 - place camera
 - rigid body transformations: rotate, translate
 - projection transforms
 - change type of camera
 - projective transformation
Rendering Pipeline

- Scene graph
- Object geometry
- Modelling
- Transforms
- Viewing
- Transform
- Projection
- Transform

Result
- All vertices of scene in shared 3D world coordinate system

Rendering Pipeline

- Scene graph
- Object geometry
- Modelling
- Transforms
- Viewing
- Transform
- Projection
- Transform

Result
- Scene vertices in 3D view (camera) coordinate system

Rendering Pipeline

- Scene graph
- Object geometry
- Modelling
- Transforms
- Viewing
- Transform
- Projection
- Transform

Result
- 2D screen coordinates of clipped vertices
Viewing and Projection

- need to get from 3D world to 2D image
- projection: geometric abstraction
 - what eyes or cameras do
- two pieces
 - viewing transform:
 - where is the camera, what is it pointing at?
 - perspective transform: 3D to 2D
 - flatten to image

OpenGL Transformation Storage

- modeling and viewing stored together
 - possible because no intervening operations
 - perspective stored in separate matrix
 - specify which matrix is target of operations
 - common practice: return to default modelview mode after doing projection operations

      ```
      glMatrixMode(GL_MODELVIEW);
      glMatrixMode(GL_PROJECTION);
      ```

Rendering Pipeline

- Geometry Database → Model/View Transform → Lighting → Perspective Transform → Clipping
- Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer
Coordinate Systems

- result of a transformation
- names
 - convenience
 - animal: leg, head, tail
 - standard conventions in graphics pipeline
 - object/modelling
 - world
 - camera/viewing/eye
 - screen/window
 - raster/device

Projective Rendering Pipeline

Object Modeling Transformation

WCS - World Coordinate System
VCS - View/World Coordinate System
NDCS - Normalized Device Coordinate System
DCS - Device Coordinate System

Basic Viewing

- starting spot - OpenGL
 - camera at world origin
 - probably inside an object
 - y axis is up
 - looking down negative z axis
 - why? RHS with x horizontal, y vertical, z out of screen
 - translate backward so scene is visible
 - move distance d = focal length
- where is camera in P1 template code?
 - 5 units back, looking down -z axis
Convenient Camera Motion
• rotate/translate/scale versus
 • eye point, gaze/lookat direction, up vector
 • demo: Robins transformation, projection

OpenGL Viewing Transformation
gluLookAt(ex, ey, ez, lx, ly, lz, ux, uy, uz)
• postmultiplies current matrix, so to be safe:

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(ex, ey, ez, lx, ly, lz, ux, uy, uz)
 // now ok to do model transformations

 • demo: Nate Robins tutorial projection

Placing Camera in World Coords: V2W
• treat camera as if it’s just an object
 • translate from origin to eye
 • rotate view vector (lookat – eye) to w axis
 • rotate around w to bring up into vw-plane
Deriving V2W Transformation

- translate origin to eye
 \[T = \begin{bmatrix} 1 & 0 & 0 & e_x \\ 0 & 1 & 0 & e_y \\ 0 & 0 & 1 & e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

- rotate view vector (lookat – eye) to w axis
 - w: normalized opposite of view/gaze vector g
 \[w = -\hat{g} = - \frac{g}{\|g\|} \]

- rotate around w to bring up into vw-plane
 - u should be perpendicular to vw-plane, thus perpendicular to w and up vector t
 - v should be perpendicular to u and w
 \[u = \frac{t \times w}{\|t \times w\|} \quad v = w \times u \]

- rotate from WCS xyz into uvw coordinate system with matrix that has columns u, v, w
 \[u = \frac{t \times w}{\|t \times w\|} \quad v = w \times u \quad w = -\hat{g} = - \frac{g}{\|g\|} \]

- reminder: rotate from uvw to xyz coord sys with matrix M that has columns u,v,w
 \[T = \begin{bmatrix} 1 & 0 & 0 & e_x \\ 0 & 1 & 0 & e_y \\ 0 & 0 & 1 & e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
 \[R = \begin{bmatrix} u_x & v_x & w_x & 0 \\ u_y & v_y & w_y & 0 \\ u_z & v_z & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
 \[M_{V2W} = TR \]
V2W vs. W2V

- $\mathbf{M}_{V2W} = \mathbf{T}$
 - \[T = \begin{bmatrix} 1 & 0 & 0 & \mathbf{e}_x^w \\ 0 & 1 & 0 & \mathbf{e}_y^w \\ 0 & 0 & 1 & \mathbf{e}_z^w \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
 - $\mathbf{R} = \begin{bmatrix} u_x & v_x & w_x & 0 \\ u_y & v_y & w_y & 0 \\ u_z & v_z & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- we derived position of camera as object in world
 - invert for `gluLookAt`: go from world to camera!

- $\mathbf{M}_{W2V} = (\mathbf{M}_{V2W})^{-1} = \mathbf{R}^{-1} \mathbf{T}^{-1}$

- inverse is transpose for orthonormal matrices
- inverse is negative for translations

Moving the Camera or the World?

- two equivalent operations
- move camera one way vs. move world other way
- example
 - initial OpenGL camera: at origin, looking along -z axis
 - create a unit square parallel to camera at z = -10
 - translate in z by 3 possible in two ways
 - camera moves to z = -3
 - Note OpenGL models viewing in left-hand coordinates
 - camera stays put, but world moves to -7
 - resulting image same either way
 - possible difference: are lights specified in world or view coordinates?

World vs. Camera Coordinates Example

- $\mathbf{a} = (1,1)_w$
- $\mathbf{b} = (1,1)_{c1} = (5,3)_w$
- $\mathbf{c} = (1,1)_{c2} = (1,3)_{c1} = (5,5)_w$
Projections I

Pinhole Camera

- ingredients
 - box, film, hole punch
- result
 - picture

www.kodak.com
www.pinhole.org
www.debevec.org/Pinhole

Pinhole Camera

- theoretical perfect pinhole
 - light shining through tiny hole into dark space yields upside-down picture

Pinhole Camera

- non-zero sized hole
 - blur: rays hit multiple points on film plane

film plane
perfect pinhole
one ray of projection

film plane
actual pinhole
multiple rays of projection
Real Cameras

- pinhole camera has small aperture (lens opening)
 - minimize blur
- problem: hard to get enough light to expose the film
- solution: lens
 - permits larger apertures
 - permits changing distance to film plane without actually moving it
 - cost: limited depth of field where image is in focus

Graphics Cameras

- real pinhole camera: image inverted
- computer graphics camera: convenient equivalent

General Projection

- image plane need not be perpendicular to view plane

Perspective Projection

- our camera must model perspective
Perspective Projection

• our camera must model perspective

Projective Transformations

• planar geometric projections
• planar: onto a plane
• geometric: using straight lines
• projections: 3D -> 2D
• aka projective mappings
• counterexamples?

Projective Transformations

• properties
 • lines mapped to lines and triangles to triangles
 • parallel lines do NOT remain parallel
 • e.g. rails vanishing at infinity
 • affine combinations are NOT preserved
 • e.g. center of a line does not map to center of projected line (perspective foreshortening)

Perspective Projection

• project all geometry
 • through common center of projection (eye point)
 • onto an image plane
Perspective Projection

- desired result for a point \([x, y, z, 1]^T\) projected onto the view plane:

\[
\frac{x'}{d} = \frac{x}{z}, \quad \frac{y'}{d} = \frac{y}{z}
\]

\[
x' = \frac{x \cdot d}{z}, \quad y' = \frac{y \cdot d}{z}, \quad z' = d
\]

- what could a matrix look like to do this?

Basic Perspective Projection

- similar triangles

\[
\frac{y'}{d} = \frac{y}{z} \rightarrow y' = \frac{y \cdot d}{z}
\]

\[
\frac{x'}{d} = \frac{x}{z} \rightarrow x' = \frac{x \cdot d}{z}
\]

- nonuniform foreshortening
- not affine

Simple Perspective Projection Matrix

\[
\begin{bmatrix}
 x \\
 \frac{z}{d} \\
 \frac{y}{d} \\
 \frac{z}{d} \\
 d
\end{bmatrix}
\]
Simple Perspective Projection Matrix

\[
\begin{bmatrix}
x \\ z/d \\ y \\ z/d \\ d
\end{bmatrix}
\]

is homogenized version of

where \(w = z/d \)

\[
\begin{bmatrix}
x \\ y \\ z \\ w
\end{bmatrix}
\]

Perspective Projection

- expressible with 4x4 homogeneous matrix
- use previously untouched bottom row
- perspective projection is irreversible
 - many 3D points can be mapped to same (x, y, d) on the projection plane
 - no way to retrieve the unique z values

Moving COP to Infinity

- as COP moves away, lines approach parallel
- when COP at infinity, orthographic view
Orthographic Camera Projection

- camera’s back plane parallel to lens
- infinite focal length
- no perspective convergence
- just throw away z values

\[
\begin{bmatrix}
 x_p \\
y_p \\
z_p \\
1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
y \\
z
\end{bmatrix}
\]

Perspective to Orthographic

- transformation of space
- center of projection moves to infinity
- view volume transformed
- from frustum (truncated pyramid) to parallelepiped (box)

View Volumes

- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test

Canonical View Volumes

- standardized viewing volume representation

perspective
orthographic
orthogonal
Why Canonical View Volumes?

- permits standardization
- clipping
 - easier to determine if an arbitrary point is enclosed in volume with canonical view volume vs. clipping to six arbitrary planes
- rendering
 - projection and rasterization algorithms can be reused

Normalized Device Coordinates

- convention
 - viewing frustum mapped to specific parallelepiped
 - Normalized Device Coordinates (NDC)
 - same as clipping coords
 - only objects inside the parallelepiped get rendered
 - which parallelepiped?
 - depends on rendering system

Normalized Device Coordinates

left/right $x = +/- 1$, top/bottom $y = +/- 1$, near/far $z = +/- 1$

Camera coordinates

NDC

Frustum

VCS

NDCS

Understanding Z

- z axis flip changes coord system handedness
- RHS before projection (eye/view coords)
- LHS after projection (clip, norm device coords)
Understanding Z

near, far always positive in OpenGL calls

\[
\begin{align*}
glOrtho(left, right, bot, top, near, far); \\
glFrustum(left, right, bot, top, near, far); \\
glPerspective(fovy, aspect, near, far); \\
\end{align*}
\]

perspective view volume

orthographic view volume

• why near and far plane?
 • near plane:
 • avoid singularity (division by zero, or very small numbers)
 • far plane:
 • store depth in fixed-point representation (integer), thus have to have fixed range of values (0...1)
 • avoid/reduce numerical precision artifacts for distant objects

Orthographic Derivation

• scale, translate, reflect for new coord sys

\[
\begin{align*}
VCS & \quad NDCS \\
\begin{align*}
& x=left \quad y=top \quad z=-far \\
& x=right \quad y=bottom \quad z=-near \\
& y=bottom \quad z=-far \\
\end{align*} \\
(1,1,1) & \quad (-1,-1,-1) \\
\end{align*}
\]
Orthographic Derivation

• scale, translate, reflect for new coord sys

\[y' = a \cdot y + b \]
\[y = \text{top} \rightarrow y' = 1 \quad 1 = a \cdot \text{top} + b \]
\[y = \text{bot} \rightarrow y' = -1 \quad -1 = a \cdot \text{bot} + b \]

\[b = 1 - a \cdot \text{top}, b = -1 - a \cdot \text{bot} \]
\[1 - a \cdot \text{top} = -1 - a \cdot \text{bot} \]
\[1 - (-1) = -a \cdot \text{bot} - (-a \cdot \text{top}) \]
\[2 = a(-\text{bot} + \text{top}) \]
\[a = \frac{2}{\text{top} - \text{bot}} \]

\[1 = \frac{2}{\text{top} - \text{bot}} \]
\[b = 1 - \frac{2 \cdot \text{top}}{\text{top} - \text{bot}} \]
\[b = \frac{(\text{top} - \text{bot}) - 2 \cdot \text{top}}{\text{top} - \text{bot}} \]
\[b = \frac{-\text{top} - \text{bot}}{\text{top} - \text{bot}} \]

\[a = \frac{2}{\text{top} - \text{bot}} \]
\[b = \frac{\text{top} + \text{bot}}{\text{top} - \text{bot}} \]

same idea for right/left, far/near

VCS

\[x=\text{right} \]
\[y=\text{top} \]
\[z=\text{near} \]

\[x=\text{left} \]
\[y=\text{bottom} \]
\[z=\text{far} \]

same idea for right/left, far/near
Orthographic Derivation

• scale, translate, reflect for new coord sys

$$P = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{\text{right} - \text{left}} \\
0 & \frac{2}{\text{top} - \text{bot}} & 0 & -\frac{\text{top} + \text{bot}}{\text{top} - \text{bot}} \\
0 & 0 & \frac{-2}{\text{far} - \text{near}} & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Orthographic OpenGL

```c
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left,right,bot,top,near,far);
```

Demo

• Brown applets: viewing techniques
 • parallel/orthographic cameras
 • projection cameras

• http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/viewing_techniques.html
Asymmetric Frusta

- our formulation allows asymmetry
- why bother?

Simpler Formulation

- left, right, bottom, top, near, far
- nonintuitive
- often overkill
- look through window center
- symmetric frustum
- constraints
 - left = -right, bottom = -top
Field-of-View Formulation

- FOV in one direction + aspect ratio (w/h)
- determines FOV in other direction
- also set near, far (reasonably intuitive)

Frustum

Perspective OpenGL

```c
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(left,right,bot,top,near,far);
or
glPerspective(fovy,aspect,near,far);
```

Demo: Frustum vs. FOV

- Nate Robins tutorial (take 2):

Projective Rendering Pipeline
Projection Warp

- warp perspective view volume to orthogonal view volume
 - render all scenes with orthographic projection!
 - aka perspective warp

Perspective Warp

- perspective viewing frustum transformed to cube
 - orthographic rendering of cube produces same image as perspective rendering of original

Predistortion

Projective Rendering Pipeline

- OCS - object/model coordinate system
- WCS - world coordinate system
- VCS - viewing/camera/eye coordinate system
- CCS - clipping coordinate system
- NDCS - normalized device coordinate system
- DCS - device/display/screen coordinate system
Separate Warp From Homogenization

- warp requires only standard matrix multiply
- distort such that orthographic projection of distorted objects is desired persp projection
 - w is changed
- clip after warp, before divide
- division by w: homogenization

Perspective Divide Example

- specific example
- assume image plane at $z = -1$
- a point $[x, y, z, 1]^T$ projects to

$$
\begin{bmatrix}
-x/z \\
-y/z \\
-z/z \\
1
\end{bmatrix} =
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
$$

- after homogenizing, once again $w=1$

Perspective Normalization

- matrix formulation

$$
\begin{bmatrix}
x_p \\
y_p \\
z_p
\end{bmatrix} =
\begin{bmatrix}
\frac{x}{z/d} \\
\frac{y}{z/d} \\
\frac{z}{d^2(1-\alpha/z)}
\end{bmatrix}
$$

- warp and homogenization both preserve relative depth (z coordinate)
Demo

- Brown applets: viewing techniques
 - parallel/orthographic cameras
 - projection cameras

Perspective To NDCS Derivation

VCS

\[x = \text{left} \]
\[x = \text{right} \]
\[y = \text{top} \]
\[y = \text{bottom} \]
\[z = \text{-near} \]
\[z = \text{-far} \]

NDCS

\[(-1,-1,-1) \]
\[(1,1,1) \]

Perspective Derivation

simple example earlier:

\[[x'] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \]

complete: shear, scale, projection-normalization

Perspective Derivation

earlier:

\[[x'] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \]

complete: shear, scale, projection-normalization
Perspective Derivation

earlier:

\[
\begin{bmatrix}
x'
\end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0 \\
\end{bmatrix} \begin{bmatrix}
x
\end{bmatrix}
\]

complete: shear, scale, projection-normalization

Recorrection: Perspective Derivation

\[
\begin{bmatrix}
x'
\end{bmatrix} = \begin{bmatrix} E & 0 & A & 0 \\
0 & F & B & 0 \\
0 & 0 & C & D \\
0 & 0 & -1 & 0 \\
\end{bmatrix} \begin{bmatrix}
x
\end{bmatrix}
\]

\[
x' = Ex + Az \\
y' = Fy + Bz \\
z' = Cz + D \\
w' = -z
\]

Perspective Derivation

• similarly for other 5 planes
• 6 planes, 6 unknowns

\[
\begin{bmatrix}
2n & 0 & r + l & 0 \\
r - l & 0 & r - l & 0 \\
0 & 2n & t + b & 0 \\
t - b & 0 & t - b & 0 \\
0 & 0 & -f + n & -2fn \\
0 & 0 & f - n & f - n \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

Projective Rendering Pipeline

object O2W world W2V viewing V2C

modeling transformation viewing transformation projection transformation

clipping CCS perspective divide normalized device N2D

OCS - object/model coordinate system
WCS - world coordinate system
VCS - viewing/camera/eye coordinate system
CCS - clipping coordinate system
NDCS - normalized device coordinate system
DCS - device/display/screen coordinate system
NDC to Device Transformation

- map from NDC to pixel coordinates on display
- NDC range is \(x = -1...1, y = -1...1, z = -1...1 \)
- typical display range: \(x = 0...500, y = 0...300 \)
 - maximum is size of actual screen
 - \(z \) range max and default is \((0, 1)\), use later for visibility

```
glViewport(0,0,w,h);
glDepthRange(0,1); // depth = 1 by default
```

Origin Location

- yet more (possibly confusing) conventions
- OpenGL origin: lower left
- most window systems origin: upper left
- then must reflect in \(y \)
- when interpreting mouse position, have to flip your \(y \) coordinates

N2D Transformation

- general formulation
 - reflect in \(y \) for upper vs. lower left origin
 - scale by width, height, depth
 - translate by width/2, height/2, depth/2
 - FCG includes additional translation for pixel centers at (.5, .5) instead of (0,0)

```
\[
\begin{bmatrix}
  x_o \\
  y_o \\
  z_o \\
  1
\end{bmatrix} = \begin{bmatrix}
  1 & 0 & \frac{\text{width}}{2} & -\frac{\text{width}}{2} \\
  0 & 1 & \frac{\text{height}}{2} & -\frac{\text{height}}{2} \\
  0 & 0 & \frac{\text{depth}}{2} & -\frac{\text{depth}}{2} \\
  0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
  x \\
  y \\
  z \\
  1
\end{bmatrix} + \begin{bmatrix}
  0 \\
  0 \\
  0 \\
  1
\end{bmatrix}
\]
```

Display \(z \) range is 0 to 1. \(\text{glDepthRange}(n,f) \) can constrain further, but depth = 1 is both max and default
Device vs. Screen Coordinates

- viewport/window location wrt actual display not available within OpenGL
- usually don’t care
 - use relative information when handling mouse events, not absolute coordinates
- could get actual display height/width, window offsets from OS
- loose use of terms: device, display, window, screen...

Projective Rendering Pipeline

- object
 - modeling transformation
 - glTranslatef(x,y,z)
 - glRotatef(a,x,y,z)
 - viewing transformation
 - glFrustum(...)
 - projection transformation
 - C2N
 - perspective division
 - CCS
 - normalized device
 - N2D
 - viewport transformation
 - device
 - DCS

Coordinate Systems

- viewing
 - (4-space, W=1)
- clipping
 - (4-space parallelepiped, with COP moved backwards to infinity)
- normalized device
 - (3-space parallelepiped)
- device
 - (3-space parallelepiped)
- framebuffer

Perspective Example

- tracks in VCS:
 - left x=-1, y=-1
 - right x=1, y=-1
- view volume
 - left = -1, right = 1
 - bot = -1, top = 1
 - near = 1, far = 4
Perspective Example

view volume
• left = -1, right = 1
• bot = -1, top = 1
• near = 1, far = 4

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{r+b}{t-b} & 0 \\
0 & 0 & -(f+n) & -2fn \\
0 & 0 & f-n & f-n \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -5/3 & -8/3 \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
-1 \\
-5z_{VCS}/3 - 8/3 \\
-z_{VCS}
\end{bmatrix}
=
\begin{bmatrix}
1 \\
-5/3 \\
-8/3 \\
1
\end{bmatrix}
\]

OpenGL Example

```
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
gluPerspective( 45, 1.0, 0.1, 200.0 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glTranslatef( 0.0, 0.0, -5.0 );
glPushMatrix();
glTranslate( 4, 4, 0 );
glutSolidTeapot(1);
glPopMatrix();
glTranslate( 2, 2, 0);
glutSolidTeapot(1);
```

Reading for Next Time

• RB Chap Color
• FCG Sections 3.2-3.3
• FCG Chap 20 Color
• FCG Chap 21.2.2 Visual Perception (Color)
Viewing: More Camera Motion

Fly "Through The Lens": Roll/Pitch/Yaw

Viewing: Incremental Relative Motion

- how to move relative to current camera coordinate system?
 - what you see in the window
- computation in coordinate system used to draw previous frame is simple:
 - incremental change I to current C
 - at time k, want $p' = I_k I_{k-1} I_{k-2} I_{k-3} \cdots I_5 I_4 I_3 I_2 I_1 C_p$
 - each time we just want to premultiply by new matrix
 - $p' = I C_p$
 - but we know that OpenGL only supports postmultiply by new matrix
 - $p' = C I p$

Viewing: Incremental Relative Motion

- sneaky trick: OpenGL modelview matrix has the info we want!
 - dump out modelview matrix from previous frame with `glGetDoublev`
 - C = current camera coordinate matrix
 - wipe the matrix stack with `glLoadIdentity`
 - apply incremental update matrix I
 - apply current camera coord matrix C
 - must leave the modelview matrix unchanged by object transformations after your display call
 - use push/pop
 - using OpenGL for storage and calculation
 - querying pipeline is expensive
 - but safe to do just once per frame
Caution: OpenGL Matrix Storage

- OpenGL internal matrix storage is columnwise, not rowwise

\[
\begin{bmatrix}
 a & e & i & m \\
 b & f & j & n \\
 c & g & k & o \\
 d & h & l & p \\
\end{bmatrix}
\]

- opposite of standard C/C++/Java convention
- possibly confusing if you look at the matrix from glGetDoublev()!

Viewing: Virtual Trackball

- interface for spinning objects around
 - drag mouse to control rotation of view volume
 - orbit/spin metaphor
 - vs. flying/driving
- rolling glass trackball
 - center at screen origin, surrounds world
 - hemisphere “sticks up” in z, out of screen
 - rotate ball = spin world

Clarify: Virtual Trackball

- know screen click: \((x, y, 0)\)
- want to infer point on trackball: \((x, y, z)\)
 - ball is unit sphere, so \(||x, y, z|| = 1.0\)
 - solve for \(z\)

Clarify: Trackball Rotation

- user drags between two points on image plane
 - mouse down at \(i_1 = (x, y)\), mouse up at \(i_2 = (a, b)\)
- find corresponding points on virtual ball
 - \(p_1 = (x, y, z)\), \(p_2 = (a, b, c)\)
- compute rotation angle and axis for ball
 - axis of rotation is plane normal: cross product \(p_1 \times p_2\)
 - amount of rotation \(\theta\) from angle between lines
 - \(p_1 \cdot p_2 = |p_1| |p_2| \cos \theta\)
Clarify: Trackball Rotation

- finding location on ball corresponding to click on image plane
 - ball radius r is 1

Trackball Computation

- user defines two points
 - place where first clicked $p_1 = (x, y, z)$
 - place where released $p_2 = (a, b, c)$
- create plane from vectors between points, origin
 - axis of rotation is plane normal: cross product
 - $(p_1 - o) \times (p_2 - o)$: $p_1 \times p_2$ if origin = (0,0,0)
 - amount of rotation depends on angle between lines
 - $p_1 \cdot p_2 = |p_1| |p_2| \cos \theta$
 - $|p_1 \times p_2| = |p_1| |p_2| \sin \theta$
- compute rotation matrix, use to rotate world

Reading

- Red Book
 - Selection and Feedback Chapter
 - all
 - Now That You Know Chapter
 - only Object Selection Using the Back Buffer

Picking
Interactive Object Selection

• move cursor over object, click
 • how to decide what is below?
 • inverse of rendering pipeline flow
 • from pixel back up to object
• ambiguity
 • many 3D world objects map to same 2D point
• four common approaches
 • manual ray intersection
 • bounding extents
 • backbuffer color coding
 • selection region with hit list

Manual Ray Intersection

• do all computation at application level
 • map selection point to a ray
 • intersect ray with all objects in scene.
• advantages
 • no library dependence
• disadvantages
 • difficult to program
 • slow: work to do depends on total number and complexity of objects in scene

Bounding Extents

• keep track of axis-aligned bounding rectangles

• advantages
 • conceptually simple
 • easy to keep track of boxes in world space

• disadvantages
 • low precision
 • must keep track of object-rectangle relationship
• extensions
 • do more sophisticated bound bookkeeping
 • first level: box check.
 • second level: object check
Backbuffer Color Coding

- use backbuffer for picking
 - create image as computational entity
 - never displayed to user
- redraw all objects in backbuffer
 - turn off shading calculations
 - set unique color for each pickable object
 - store in table
 - read back pixel at cursor location
 - check against table

advantages
- conceptually simple
- variable precision

disadvantages
- introduce 2x redraw delay
- backbuffer readback very slow

Select/Hit

- use small region around cursor for viewport
- assign per-object integer keys (names)
- redraw in special mode
- store hit list of objects in region
- examine hit list
- OpenGL support

Backbuffer Example

```
for(int i = 0; i < 2; i++)
   for(int j = 0; j < 2; j++) {
      glPushMatrix();
      switch (i*2+j) {
         case 0: glColor3ub(255,0,0);break;
         case 1: glColor3ub(0,255,0);break;
         case 2: glColor3ub(0,0,255);break;
         case 3: glColor3ub(250,0,250);break;
      }
      glTranslatef(i*3.0,0,-j * 3.0)
      glCallList(snowman_display_list);
      glPopMatrix();
   }
```
Viewport
- small rectangle around cursor
 - change coord sys so fills viewport
- why rectangle instead of point?
 - people aren’t great at positioning mouse
 - Fitts’ Law: time to acquire a target is function of the distance to and size of the target
 - allow several pixels of slop

Viewport
- nontrivial to compute
 - invert viewport matrix, set up new orthogonal projection
- simple utility command
 - `gluPickMatrix(x,y,w,h,viewport)`
 - `x,y`: cursor point
 - `w,h`: sensitivity/slop (in pixels)
 - push old setup first, so can pop it later

Render Modes
- `glRenderMode(mode)`
 - `GL_RENDER`: normal color buffer
 - default
 - `GL_SELECT`: selection mode for picking
 -(GL_FEEDBACK: report objects drawn)

Name Stack
- again, "names" are just integers
 - `glInitNames()`
- flat list
 - `glLoadName(name)`
- or hierarchy supported by stack
 - `glPushName(name), glPopName`
 - can have multiple names per object
Hierarchical Names Example

```c
for(int i = 0; i < 2; i++) {
    glPushMatrix();
    for(int j = 0; j < 2; j++) {
        glTranslatef(i*10.0,0,j * 10.0);
        glCallList(snowManHeadDL);
        glLoadName(BODY);
        glCallList(snowManBodyDL);
        glPopMatrix();
    }
    glPopMatrix();
}
```

Hierarchical Names Example

http://www.lighthouse3d.com/opengl/picking/

Hit List

- `glSelectBuffer(buffersize, *buffer)`
 - where to store hit list data
- on hit, copy entire contents of name stack to output buffer.
- hit record
 - number of names on stack
 - minimum and maximum depth of object vertices
 - depth lies in the NDC z range [0,1]
 - format: multiplied by $2^{32} - 1$ then rounded to nearest int

Integrated vs. Separate Pick Function

- integrate: use same function to draw and pick
 - simpler to code
 - name stack commands ignored in render mode
- separate: customize functions for each
 - potentially more efficient
 - can avoid drawing unpickable objects

Select/Hit

- advantages
 - faster
 - OpenGL support means hardware acceleration
 - avoid shading overhead
 - flexible precision
 - size of region controllable
 - flexible architecture
 - custom code possible, e.g. guaranteed frame rate
- disadvantages
 - more complex
Hybrid Picking

- select/hit approach: fast, coarse
 - object-level granularity
- manual ray intersection: slow, precise
 - exact intersection point
- hybrid: both speed and precision
 - use select/hit to find object
 - then intersect ray with that object

OpenGL Precision Picking Hints

- gluUnproject
 - transform window coordinates to object coordinates given current projection and modelview matrices
 - use to create ray into scene from cursor location
 - call gluUnProject twice with same (x,y) mouse location
 - z = near: (x,y,0)
 - z = far: (x,y,1)
 - subtract near result from far result to get direction vector for ray
 - use this ray for line/polygon intersection

Projective Rendering Pipeline

- OCS - object coordinate system
- WCS - world coordinate system
- VCS - viewing coordinate system
- CCS - clipping coordinate system
- NDCS - normalized device coordinate system
- DCS - device coordinate system

following pipeline from top/left to bottom/right: moving object POV

<table>
<thead>
<tr>
<th>Gl transformation</th>
<th>Modeling</th>
<th>Viewing</th>
<th>Projection</th>
<th>Clipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>glVertex3f(x,y,z)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glTranslatef(x,y,z)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glRotatef(a,x,y,z)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gluLookAt(...)</td>
<td>modeling</td>
<td>viewing</td>
<td>projection</td>
<td>clipping</td>
</tr>
<tr>
<td>glFrustum(...)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glutInitWindowSize(w,h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glViewport(x,y,a,b)</td>
<td>modeling</td>
<td>viewing</td>
<td>projection</td>
<td>clipping</td>
</tr>
</tbody>
</table>

OpenGL Example

- transformations that are applied to object first are specified last
Coord Sys: Frame vs Point

read down: transforming between coordinate frames, from frame A to frame B

read up: transforming points, up from frame B coords to frame A coords

<table>
<thead>
<tr>
<th>OpenGL command order</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D2N</td>
<td>N2D</td>
</tr>
<tr>
<td>N2V</td>
<td>V2N</td>
</tr>
<tr>
<td>V2W</td>
<td>W2V</td>
</tr>
<tr>
<td>W2O</td>
<td>O2W</td>
</tr>
</tbody>
</table>

Coord Sys: Frame vs Point

- **DCS** display
 - `glViewport(x,y,a,b)`
- **NDCS** normalized device
 - `glFrustum(...)`
- **VCS** viewing
 - `gluLookAt(...)`
- **WCS** world
 - `glRotatef(a,x,y,z)`
- **OCS** object
 - `glVertex3f(x,y,z)`

pipeline interpretation

• **H2** uses the object/pipeline POV
 - Q1/4 is **W2V** (`gluLookAt`)
 - Q2/5-6 is **V2N** (`glFrustum`)
 - Q3/7 is **N2D** (`glViewport`)

• is **gluLookat viewing transformation V2W** or **W2V**? depends on which way you read!
 - coordinate frames: **V2W**
 - takes you from view to world coordinate frame
 - points/objects: **W2V**
 - point is transformed from world to view coords when multiply by gluLookAt matrix