
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Textures

University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2013

Tamara Munzner

2

Reading for Texture Mapping

•  FCG Chap 11 Texture Mapping	

•  except 11.7 (except 11.8, 2nd ed)	

•  RB Chap Texture Mapping	

3

Texturing

4

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing Blending

Frame-
buffer

Geometry Processing

Rasterization Fragment Processing

5

Texture Mapping
•  real life objects have

nonuniform colors,
normals

•  to generate realistic
objects, reproduce
coloring & normal
variations = texture

•  can often replace
complex geometric
details

6

Texture Mapping
•  introduced to increase realism

•  lighting/shading models not enough
•  hide geometric simplicity

•  images convey illusion of geometry
•  map a brick wall texture on a flat polygon
•  create bumpy effect on surface

•  associate 2D information with 3D surface
•  point on surface corresponds to a point in

texture
•  “paint” image onto polygon

7

Color Texture Mapping

•  define color (RGB) for each point on object
surface

•  two approaches
•  surface texture map
•  volumetric texture

8

Texture Coordinates
•  texture image: 2D array of color values (texels)
•  assigning texture coordinates (s,t) at vertex with

object coordinates (x,y,z,w)
•  use interpolated (s,t) for texel lookup at each pixel
•  use value to modify a polygon’s color

•  or other surface property
•  specified by programmer or artist

glTexCoord2f(s,t)
glVertexf(x,y,z,w)

9

Texture Mapping Example

+ =

10

Example Texture Map

glTexCoord2d(0,0);
glVertex3d (0, -2, -2);

glTexCoord2d(1,1);
glVertex3d (0, 2, 2);

11

Fractional Texture Coordinates

(0,0) (1,0)

(0,1) (1,1)

(0,0) (.25,0)

(0,.5) (.25,.5)

texture
image

12

Texture Lookup: Tiling and Clamping

•  what if s or t is outside the interval [0…1]?
•  multiple choices

•  use fractional part of texture coordinates
•  cyclic repetition of texture to tile whole surface

glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_REPEAT,
GL_TEXTURE_WRAP_T, GL_REPEAT, ...)

•  clamp every component to range [0…1]
•  re-use color values from texture image border

glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_CLAMP,
GL_TEXTURE_WRAP_T, GL_CLAMP, ...)

13

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(1,0)

(0,0) (0,1)

(1,1)

Tiled Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

(4,4)

(0,4)

(4,0)

(0,0)
14

Demo

•  Nate Robbins tutors
•  texture

15

Texture Coordinate Transformation
•  motivation

•  change scale, orientation of texture on an object
•  approach

•  texture matrix stack
•  transforms specified (or generated) tex coords
 glMatrixMode(GL_TEXTURE);
 glLoadIdentity();
 glRotate();

 …
•  more flexible than changing (s,t) coordinates

•  [demo]

16

Texture Functions
•  once have value from the texture map, can:

•  directly use as surface color: GL_REPLACE
•  throw away old color, lose lighting effects

•  modulate surface color: GL_MODULATE
•  multiply old color by new value, keep lighting info
•  texturing happens after lighting, not relit

•  use as surface color, modulate alpha: GL_DECAL
•  like replace, but supports texture transparency

•  blend surface color with another: GL_BLEND
•  new value controls which of 2 colors to use
•  indirection, new value not used directly for coloring

•  specify with glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, <mode>)

•  [demo]

17

Texture Pipeline

Texel color

(0.9,0.8,0.7)

(x, y, z)

Object position

(-2.3, 7.1, 17.7)

(s, t)

Parameter space

(0.32, 0.29)

Texel space

(81, 74)

(s’, t’)

Transformed
parameter space

(0.52, 0.49)

Final color

(0.45,0.4,0.35)

Object color

(0.5,0.5,0.5)

18

Texture Objects and Binding
•  texture object

•  an OpenGL data type that keeps textures resident in memory and
provides identifiers to easily access them

•  provides efficiency gains over having to repeatedly load and reload a
texture

•  you can prioritize textures to keep in memory
•  OpenGL uses least recently used (LRU) if no priority is assigned

•  texture binding
•  which texture to use right now
•  switch between preloaded textures

19

Basic OpenGL Texturing
•  create a texture object and fill it with texture data:

•  glGenTextures(num, &indices) to get identifiers for the objects
•  glBindTexture(GL_TEXTURE_2D, identifier) to bind

•  following texture commands refer to the bound texture
•  glTexParameteri(GL_TEXTURE_2D, …, …) to specify

parameters for use when applying the texture
•  glTexImage2D(GL_TEXTURE_2D, ….) to specify the texture data

(the image itself)
•  enable texturing: glEnable(GL_TEXTURE_2D)
•  state how the texture will be used:

•  glTexEnvf(…)
•  specify texture coordinates for the polygon:

•  use glTexCoord2f(s,t) before each vertex:
•  glTexCoord2f(0,0); glVertex3f(x,y,z);

20

Low-Level Details
•  large range of functions for controlling layout of texture data

•  state how the data in your image is arranged
•  e.g.: glPixelStorei(GL_UNPACK_ALIGNMENT, 1) tells

OpenGL not to skip bytes at the end of a row
•  you must state how you want the texture to be put in memory:

how many bits per “pixel”, which channels,…
•  textures must be square and size a power of 2

•  common sizes are 32x32, 64x64, 256x256
•  smaller uses less memory, and there is a finite amount of

texture memory on graphics cards
•  ok to use texture template sample code for project 4

•  http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

21

Texture Mapping

•  texture coordinates
•  specified at vertices

glTexCoord2f(s,t);
glVertexf(x,y,z);

•  interpolated across triangle (like R,G,B,Z)
• …well not quite!

22

Texture Mapping

•  texture coordinate interpolation
•  perspective foreshortening problem

23

Interpolation: Screen vs. World Space

•  screen space interpolation incorrect
•  problem ignored with shading, but artifacts

more visible with texturing

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

24

Texture Coordinate Interpolation
•  perspective correct interpolation

•  α, β, γ :
•  barycentric coordinates of a point P in a triangle

•  s0, s1, s2 :
•  texture coordinates of vertices

•  w0, w1,w2 :
•  homogeneous coordinates of vertices

210

221100

///
///

www
wswswss

γβα
γβα

++

⋅+⋅+⋅
=

(s1,t1)

(s0,t0)

(s2,t2)

(x1,y1,z1,w1)

(x0,y0,z0,w0)

(x2,y2,z2,w2)
(α,β,γ)	

(s,t)?

25

Reconstruction

(image courtesy of Kiriakos Kutulakos, U Rochester)
26

Reconstruction
•  how to deal with:

• pixels that are much larger than texels?
•  apply filtering, “averaging”

• pixels that are much smaller than texels ?

•  interpolate

27

MIPmapping

Without MIP-mapping

With MIP-mapping

use “image pyramid” to precompute
averaged versions of the texture

store whole pyramid in
single block of memory

28

MIPmaps
•  multum in parvo -- many things in a small place

•  prespecify a series of prefiltered texture maps of decreasing
resolutions

•  requires more texture storage
•  avoid shimmering and flashing as objects move

•  gluBuild2DMipmaps
•  automatically constructs a family of textures from original

texture size down to 1x1

without with

29

MIPmap storage

•  only 1/3 more space required

30

Texture Parameters

•  in addition to color can control other material/
object properties
•  surface normal (bump mapping)
•  reflected color (environment mapping)

31

Bump Mapping: Normals As Texture
•  object surface often not smooth – to recreate correctly

need complex geometry model
•  can control shape “effect” by locally perturbing surface

normal
•  random perturbation
•  directional change over region

32

Bump Mapping

33

Bump Mapping

34

Embossing

•  at transitions
•  rotate point’s surface normal by θ or - θ

35

Displacement Mapping
•  bump mapping gets

silhouettes wrong
•  shadows wrong too

•  change surface
geometry instead
•  only recently

available with
realtime graphics

•  need to subdivide
surface

36

Environment Mapping

•  cheap way to achieve reflective effect
•  generate image of surrounding
•  map to object as texture

37

Environment Mapping
•  used to model object that reflects

surrounding textures to the eye
•  movie example: cyborg in Terminator 2

•  different approaches
•  sphere, cube most popular

• OpenGL support
• GL_SPHERE_MAP, GL_CUBE_MAP

•  others possible too

38

Sphere Mapping
•  texture is distorted fish-eye view

•  point camera at mirrored sphere
•  spherical texture mapping creates texture coordinates that

correctly index into this texture map

39

Cube Mapping

•  6 planar textures, sides of cube
•  point camera in 6 different directions, facing

out from origin

40

Cube Mapping

A

B
C

E

F

D

41

Cube Mapping
•  direction of reflection vector r selects the face of the cube to

be indexed
•  co-ordinate with largest magnitude

•  e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face

•  remaining two coordinates (normalized by the 3rd coordinate)
selects the pixel from the face.

•  e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

•  difficulty in interpolating across faces

42

Volumetric Texture
•  define texture pattern over 3D

domain - 3D space containing
the object
•  texture function can be

digitized or procedural
•  for each point on object

compute texture from point
location in space

•  common for natural material/
irregular textures (stone,
wood,etc…)

43

Volumetric Bump Mapping

Marble

Bump

44

Volumetric Texture Principles

•  3D function ρ(x,y,z)
•  texture space – 3D space that holds the

texture (discrete or continuous)
•  rendering: for each rendered point P(x,y,z)

compute ρ(x,y,z)
•  volumetric texture mapping function/space

transformed with objects

45

Procedural Approaches

46

Procedural Textures

•  generate “image” on the fly, instead of
loading from disk
•  often saves space
•  allows arbitrary level of detail

47

Procedural Texture Effects: Bombing

•  randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table)
•  for point P search table and determine if inside shape

•  if so, color by shape
•  otherwise, color by objects color

48

Procedural Texture Effects

•  simple marble

function boring_marble(point)
 x = point.x;
 return marble_color(sin(x));
 // marble_color maps scalars to colors

49

Perlin Noise: Procedural Textures

•  several good explanations
•  FCG Section 10.1
•  http://www.noisemachine.com/talk1
•  http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
•  http://www.robo-murito.net/code/perlin-noise-math-faq.html

http://mrl.nyu.edu/~perlin/planet/ 50

Perlin Noise: Coherency

•  smooth not abrupt changes

 coherent white noise

51

Perlin Noise: Turbulence

•  multiple feature sizes
•  add scaled copies of noise

52

Perlin Noise: Turbulence

•  multiple feature sizes
•  add scaled copies of noise

53

Perlin Noise: Turbulence

•  multiple feature sizes
•  add scaled copies of noise

function turbulence(p)
 t = 0; scale = 1;

 while (scale > pixelsize) {
 t += abs(Noise(p/

scale)*scale);

 scale/=2;
 } return t;

54

Generating Coherent Noise

•  just three main ideas
•  nice interpolation
•  use vector offsets to make grid irregular
•  optimization

•  sneaky use of 1D arrays instead of 2D/3D one

55

Interpolating Textures

•  nearest neighbor
•  bilinear
•  hermite

56

Vector Offsets From Grid

•  weighted average of gradients
•  random unit vectors

57

Optimization
•  save memory and time
•  conceptually:

•  2D or 3D grid
•  populate with random number generator

•  actually:
•  precompute two 1D arrays of size n (typical size 256)

•  random unit vectors
•  permutation of integers 0 to n-1

•  lookup
•  g(i, j, k) = G[(i + P[(j + P[k]) mod n]) mod n]

58

Perlin Marble
•  use turbulence, which in turn uses noise:

function marble(point)
 x = point.x + turbulence(point);

 return marble_color(sin(x))

59

Procedural Modeling
•  textures, geometry

•  nonprocedural: explicitly stored in memory

•  procedural approach
•  compute something on the fly
•  often less memory cost
•  visual richness

•  fractals, particle systems, noise

60

Fractal Landscapes

•  fractals: not just for “showing math”
•  triangle subdivision
•  vertex displacement
•  recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

61

Self-Similarity

•  infinite nesting of structure on all scales

62

Fractal Dimension
•  D = log(N)/log(r)

N = measure, r = subdivision scale
•  Hausdorff dimension: noninteger

D = log(N)/log(r) D = log(4)/log(3) = 1.26

coastline of Britain

Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html 63

Language-Based Generation

•  L-Systems: after Lindenmayer
•  Koch snowflake: F :- FLFRRFLF

• F: forward, R: right, L: left

•  Mariano’s Bush:
 F=FF-[-F+F+F]+[+F-F-F] }
• angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html
64

1D: Midpoint Displacement

•  divide in half
•  randomly displace
•  scale variance by half

http://www.gameprogrammer.com/fractal.html

65

2D: Diamond-Square
•  fractal terrain with diamond-square approach

•  generate a new value at midpoint
•  average corner values + random displacement
•  scale variance by half each time

66

Particle Systems
•  loosely defined

•  modeling, or rendering, or animation
•  key criteria

•  collection of particles
•  random element controls attributes

• position, velocity (speed and direction), color,
lifetime, age, shape, size, transparency

• predefined stochastic limits: bounds, variance,
type of distribution

67

Particle System Examples
•  objects changing fluidly over time

•  fire, steam, smoke, water
•  objects fluid in form

•  grass, hair, dust
•  physical processes

•  waterfalls, fireworks, explosions
•  group dynamics: behavioral

•  birds/bats flock, fish school,
human crowd, dinosaur/elephant stampede

68

Particle Systems Demos

•  general particle systems
•  http://www.wondertouch.com

•  boids: bird-like objects
•  http://www.red3d.com/cwr/boids/

69

Particle Life Cycle
•  generation

•  randomly within “fuzzy” location
•  initial attribute values: random or fixed

•  dynamics
•  attributes of each particle may vary over time

•  color darker as particle cools off after explosion
•  can also depend on other attributes

•  position: previous particle position + velocity + time

•  death
•  age and lifetime for each particle (in frames)
•  or if out of bounds, too dark to see, etc

70

Particle System Rendering
•  expensive to render thousands of particles
•  simplify: avoid hidden surface calculations

•  each particle has small graphical primitive
(blob)

•  pixel color: sum of all particles mapping to it
•  some effects easy

•  temporal anti-aliasing (motion blur)
• normally expensive: supersampling over time
• position, velocity known for each particle
•  just render as streak

71

Procedural Approaches Summary

•  Perlin noise
•  fractals
•  L-systems
•  particle systems

•  not at all a complete list!
•  big subject: entire classes on this alone

