Rasterization

Reading for This Module

• FCG Chap 3 Raster Algorithms (through 3.2)
• Section 2.7 Triangles
• Section 8.1 Rasterization (through 8.1.2)
Rasterization
Scan Conversion - Rasterization

• convert continuous rendering primitives into discrete fragments/pixels
 • lines
 • midpoint/Bresenham
 • triangles
 • flood fill
 • scanline
 • implicit formulation
 • interpolation
Scan Conversion

- given vertices in DCS, fill in the pixels
- display coordinates required to provide scale for discretization
 - [demo]
Basic Line Drawing

\[y = mx + b \]
\[y = \frac{(y_1 - y_0)}{(x_1 - x_0)} (x - x_0) + y_0 \]

- **goals**
 - integer coordinates
 - thinnest line with no gaps
- **assume**
 - \(x_0 < x_1 \), \(\text{slope} \) \(0 < \frac{dy}{dx} < 1 \)
 - one octant, other cases symmetric
 - how can we do this more quickly?

```c
Line (x_0, y_0, x_1, y_1)
begin
float dx, dy, x, y, slope;
dx ← x_1 - x_0;
dy ← y_1 - y_0;
slope ← dy / dx;
y ← y_0
for x from x_0 to x_1 do
    begin
        PlotPixel (x, Round (y));
        y ← y + slope;
    end;
end;
```
Midpoint Algorithm

- we're moving horizontally along x direction (first octant)
 - only two choices: draw at current y value, or move up vertically to y +1?
 - check if midpoint between two possible pixel centers above or below line candidates
 - top pixel: (x+1,y+1)
 - bottom pixel: (x+1, y)
 - midpoint: (x+1, y+.5)
 - check if midpoint above or below line
 - below: pick top pixel
 - above: pick bottom pixel
- other octants: different tests
 - octant II: y loop, check x left/right
Midpoint Algorithm

- we're moving horizontally along x direction (first octant)
 - only two choices: draw at current y value, or move up vertically to y +1?
 - check if midpoint between two possible pixel centers above or below line candidates
 - top pixel: (x+1,y+1)
 - bottom pixel: (x+1, y)
 - midpoint: (x+1, y+.5)
 - check if midpoint above or below line
 - below: pick top pixel
 - above: pick bottom pixel

- key idea behind Bresenham
 - reuse computation from previous step
 - integer arithmetic by doubling values
 - [demo]
Bresenham, Detailed Derivation

- Goal: function F tells us if line is above or below some point
 - $F(x,y) = 0$ on line
 - $F(x,y) < 0$ when line under point
 - $F(x,y) > 0$ when line over point

\[
y = mx + b
\]
\[
y = \frac{dy}{dx} x + b
\]
\[
dx \times y = dy \times x + b \times dx
\]
\[
0 = dy \times x - dx \times y + b \times dx
\]
\[
2 \times 0 = 2 \times dy \times x - 2 \times dx \times y + 2 \times b \times dx
\]
\[
0 = 2 \times dy \times x - 2 \times dx \times y + 2 \times b \times dx
\]
\[
F(x, y) = 2 \times dy \times x - 2 \times dx \times y + 2 \times b \times dx
\]
Using F with Midpoints: Initial

\[F(x_0, y_0) = 2 \cdot dy \cdot x_0 - 2 \cdot dx \cdot y_0 + 2 \cdot b \cdot dx \]

\[F(x_0 + 1, y_0 + .5) = 2 \cdot dy \cdot (x_0 + 1) - 2 \cdot dx \cdot (y_0 + .5) + 2 \cdot b \cdot dx \]

\[= 2 \cdot dy \cdot x_0 + 2 \cdot dy - 2 \cdot dx \cdot y_0 - dx + 2 \cdot b \cdot dx \]
Incremental F: Initial

\[F(x_0, y_0) = 2 \cdot dy \cdot x_0 - 2 \cdot dx \cdot y_0 + 2 \cdot b \cdot dx \]

\[F(x_0 + 1, y_0 + .5) = 2 \cdot dy \cdot (x_0 + 1) - 2 \cdot dx \cdot (y_0 + .5) + 2 \cdot b \cdot dx \]

\[= 2 \cdot dy \cdot x_0 + 2 \cdot dy - 2 \cdot dx \cdot y_0 - dx + 2 \cdot b \cdot dx \]

\[F(x_0 + 1, y_0 + .5) - F(x_0, y_0) = 2 \cdot dy - dx = \text{diff} \]

- Initial difference in F: 2*dy-dx
Using F with Midpoints: No Y Change

\[F(x_0 + 1, y_0 + .5) \]
\[= 2 \times dy \times x_0 + 2 \times dy - 2 \times dx \times y_0 - dx + 2 \times b \times dx \]

\[F(x_0 + 2, y_0 + .5) \]
\[= 2 \times dy \times (x_0 + 2) - 2 \times dx \times (y_0 + .5) + 2 \times b \times dx \]
\[= 2 \times dy \times x_0 + 4 \times dy - 2 \times dx \times y_0 - dx + 2 \times b \times dx \]
Incremental F: No Y Change

\[F(x_0 + 1, y_0 + .5) = 2 \cdot dy \cdot x_0 + 2 \cdot dy - 2 \cdot dx \cdot y_0 - dx + 2 \cdot b \cdot dx \]

\[F(x_0 + 2, y_0 + .5) = 2 \cdot dy \cdot (x_0 + 2) - 2 \cdot dx \cdot (y_0 + .5) + 2 \cdot b \cdot dx \]

\[F(x_0 + 2, y_0 + .5) - F(x_0 + 1, y_0 + .5) = 2 \cdot dy = \text{diff} \]

- Next difference in F: 2\(*dy\) (no change in y for pixel)
Using F with Midpoints: Y Increased

\[F(x_0 + 2, y_0 + .5) = 2 \times dy \times x_0 + 4 \times dy - 2 \times dx \times y_0 - dx + 2 \times b \times dx \]
\[F(x_0 + 3, y_0 + 1.5) = 2 \times dy \times (x_0 + 3) - 2 \times dx \times (y_0 + 1.5) + 2 \times b \times dx \]
\[= 2 \times dy \times x_0 + 6 \times dy - 2 \times dx \times y_0 - 3 \times dx + 2 \times b \times dx \]
Incremental \(F: Y \) Increased

\[
F(x_0 + 2, y_0 + .5) = 2 \cdot dy \cdot x_0 + 4 \cdot dy - 2 \cdot dx \cdot y_0 - dx + 2 \cdot b \cdot dx
\]

\[
F(x_0 + 3, y_0 + 1.5) = 2 \cdot dy \cdot (x_0 + 3) - 2 \cdot dx \cdot (y_0 + 1.5) + 2 \cdot b \cdot dx
\]

\[
F(x_0 + 3, y_0 + 1.5) - F(x_0 + 2, y_0 + .5) = 2 \cdot dy - 2 \cdot dx = \text{diff}
\]

- Next difference in \(F \): \(2 \cdot dy - 2 \cdot dx \) (when pixel at \(y+1 \))
Bresenham: Reuse Computation, Integer Only

\[
y = y_0;
\]
\[
dx = x_1 - x_0;
\]
\[
dy = y_1 - y_0;
\]
\[
d = 2 \times dy - dx;
\]
\[
inc\text{Keep}Y = 2 \times dy;
\]
\[
inc\text{Increase}Y = 2 \times dy - 2 \times dx;
\]
\[
\text{for} \ (x=x_0; \ x <= x_1; \ x++) \ { \{ \\
\hspace{1em} \text{draw}(x,y); \\
\hspace{1em} \text{if} \ (d>0) \ \text{then} \ { \\
\hspace{2em} y = y + 1; \\
\hspace{2em} d += inc\text{Increase}Y; \\
\hspace{1em} } \ \text{else} \ { \\
\hspace{2em} d += inc\text{Keep}Y; \}
\}}
Rasterizing Polygons/Triangles

• basic surface representation in rendering
• why?
 • lowest common denominator
 • can approximate any surface with arbitrary accuracy
 • all polygons can be broken up into triangles
 • guaranteed to be:
 • planar
 • triangles - convex
• simple to render
 • can implement in hardware
Triangulating Polygons

• simple convex polygons
 • trivial to break into triangles
 • pick one vertex, draw lines to all others not immediately adjacent
 • OpenGL supports automatically
 • glBegin(GL_POLYGON) ... glEnd()

• concave or non-simple polygons
 • more effort to break into triangles
 • simple approach may not work
 • OpenGL can support at extra cost
 • gluNewTess(), gluTessCallback(), ...
Problem

• input: closed 2D polygon
• problem: fill its interior with specified color on graphics display
• assumptions
 • simple - no self intersections
 • simply connected
• solutions
 • flood fill
 • edge walking
Flood Fill

- simple algorithm
 - draw edges of polygon
 - use flood-fill to draw interior
Flood Fill

• start with **seed point**
• recursively set all neighbors until boundary is hit
Flood Fill

- draw edges
- run:

 \[
 \text{FloodFill}(\text{Polygon } P, \text{ int } x, \text{ int } y, \text{ Color } C) \\
 \text{if not (OnBoundary}(x, y, P) \text{ or Colored}(x, y, C))
 \begin{align*}
 &\begin{align*}
 &\text{PlotPixel}(x, y, C); \\
 &\text{FloodFill}(P, x + 1, y, C); \\
 &\text{FloodFill}(P, x, y + 1, C); \\
 &\text{FloodFill}(P, x, y - 1, C); \\
 &\text{FloodFill}(P, x - 1, y, C);
 \end{align*}
 \end{align*}
 \text{end ;}
 \]

- drawbacks?
Flood Fill Drawbacks

- pixels visited up to 4 times to check if already set
- need per-pixel flag indicating if set already
 - must clear for every polygon!
Scanline Algorithms

- **scanline**: a line of pixels in an image
 - set pixels inside polygon boundary along horizontal lines one pixel apart vertically
General Polygon Rasterization

- how do we know whether given pixel on scanline is inside or outside polygon?
• idea: use a **parity test**

 for each scanline
 edgeCnt = 0;
 for each pixel on scanline (l to r)
 if (oldpixel->newpixel crosses edge)
 edgeCnt ++;
 // draw the pixel if edgeCnt odd
 if (edgeCnt % 2)
 setPixel(pixel);
Making It Fast: Bounding Box

• smaller set of candidate pixels
 • loop over xmin, xmax and ymin,ymax instead of all x, all y
Triangle Rasterization Issues

- moving slivers

- shared edge ordering
Triangle Rasterization Issues

- **exactly which pixels should be lit?**
 - pixels with centers inside triangle edges
- **what about pixels exactly on edge?**
 - draw them: order of triangles matters (it shouldn’t)
 - don’t draw them: gaps possible between triangles
- need a consistent (if arbitrary) rule
 - example: draw pixels on left or top edge, but not on right or bottom edge
 - example: check if triangle on same side of edge as offscreen point
Interpolation
Interpolation During Scan Conversion

- drawing pixels in polygon requires interpolating many values between vertices
 - r, g, b colour components
 - use for shading
 - z values
 - u, v texture coordinates
 - N_x, N_y, N_z surface normals
- equivalent methods (for triangles)
 - bilinear interpolation
 - barycentric coordinates
Bilinear Interpolation

- interpolate quantity along L and R edges, as a function of y
 - then interpolate quantity as a function of x
Barycentric Coordinates

- non-orthogonal coordinate system based on triangle itself
 - origin: P_1, basis vectors: (P_2-P_1) and (P_3-P_1)

$$P = P_1 + \beta(P_2-P_1) + \gamma(P_3-P_1)$$
Barycentric Coordinates

\[\beta = 0, \quad \gamma = 0 \]

\[\beta = 0.5, \quad \gamma = 0 \]

\[\beta = 1.5, \quad \gamma = 1 \]

\[\beta = 1, \quad \gamma = 1.5 \]

\[\beta = -1, \quad \gamma = 1.5 \]

\[\beta = -0.5, \quad \gamma = 0.5 \]

\[\beta = 1.5, \quad \gamma = -0.5 \]

\[\beta = -1, \quad \gamma = -1 \]
Barycentric Coordinates

- non-orthogonal coordinate system based on triangle itself
 - origin: \(P_1 \), basis vectors: \((P_2 - P_1)\) and \((P_3 - P_1)\)

\[
P = P_1 + \beta(P_2 - P_1) + \gamma(P_3 - P_1)
\]
\[
P = (1-\beta-\gamma)P_1 + \beta P_2 + \gamma P_3
\]
\[
P = \alpha P_1 + \beta P_2 + \gamma P_3
\]
Using Barycentric Coordinates

- weighted combination of vertices
- smooth mixing
- speedup
 - compute once per triangle

\[
P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3
\]
\[
\alpha + \beta + \gamma = 1
\]
\[
0 \leq \alpha, \beta, \gamma \leq 1 \text{ for points inside triangle}
\]

“convex combination of points”
Deriving Barycentric From Bilinear

• from bilinear interpolation of point \(P \) on scanline

\[
P_L = P_2 + \frac{d_1}{d_1 + d_2} (P_3 - P_2)
\]

\[
= (1 - \frac{d_1}{d_1 + d_2}) P_2 + \frac{d_1}{d_1 + d_2} P_3 =
\]

\[
= \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3
\]
Deriving Barycentric From Bilineaer

• similarly

\[P_R = P_2 + \frac{b_1}{b_1 + b_2} (P_1 - P_2) \]

\[= (1 - \frac{b_1}{b_1 + b_2}) P_2 + \frac{b_1}{b_1 + b_2} P_1 = \]

\[= \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \]
Deriving Barycentric From Bilinear

• combining

\[P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R \]

\[P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \]

\[P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \]

• gives

\[P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right) \]
Deriving Barycentric From Bilinear

thus \(P = \alpha P_1 + \beta P_2 + \gamma P_3 \) with

\[
\alpha = \frac{c_1}{c_1 + c_2} \frac{b_1}{b_1 + b_2}
\]

\[
\beta = \frac{c_2}{c_1 + c_2} \frac{d_2}{d_1 + d_2} + \frac{c_1}{c_1 + c_2} \frac{b_2}{b_1 + b_2}
\]

\[
\gamma = \frac{c_2}{c_1 + c_2} \frac{d_1}{d_1 + d_2}
\]

• can verify barycentric properties

\[
\alpha + \beta + \gamma = 1, \quad 0 \leq \alpha, \beta, \gamma \leq 1
\]
Computing Barycentric Coordinates

- 2D triangle area
 - half of parallelogram area
 - from cross product

\[
A = A_{P1} + A_{P2} + A_{P3}
\]

\[
\alpha = \frac{A_{P1}}{A}
\]

\[
\beta = \frac{A_{P2}}{A}
\]

\[
\gamma = \frac{A_{P3}}{A}
\]