
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2013

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Rendering Pipeline, OpenGL/GLUT

2

Today’s Readings
•  today

•  RB Chap Introduction to OpenGL	

•  RB Chap State Management and Drawing Geometric

Objects	

•  RB App Basics of GLUT (Aux in v 1.1)	

•  RB = Red Book = OpenGL Programming Guide	

•  http://fly.cc.fer.hr/~unreal/theredbook/	

3

Rendering Pipeline

4

Rendering
•  goal

•  transform computer models into images
•  may or may not be photo-realistic

•  interactive rendering
•  fast, but limited quality
•  roughly follows a fixed patterns of operations

•  rendering pipeline

•  offline rendering
•  ray tracing
•  global illumination

5

Rendering
•  tasks that need to be performed

(in no particular order):
•  project all 3D geometry onto the image plane

•  geometric transformations
•  determine which primitives or parts of primitives are

visible
•  hidden surface removal

•  determine which pixels a geometric primitive covers
•  scan conversion

•  compute the color of every visible surface point
•  lighting, shading, texture mapping

6

Rendering Pipeline
•  what is the pipeline?

•  abstract model for sequence of operations to
transform geometric model into digital image

•  abstraction of the way graphics hardware works
•  underlying model for application programming

interfaces (APIs) that allow programming of graphics
hardware

•  OpenGL
•  Direct 3D

•  actual implementation details of rendering pipeline
will vary

7

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing Blending

Frame-
buffer

8

Geometry Database

•  geometry database
•  application-specific data structure for

holding geometric information
•  depends on specific needs of application

•  triangle soup, points, mesh with connectivity
information, curved surface

Geometry
Database

9

Model/View Transformation

•  modeling transformation
•  map all geometric objects from local coordinate system

into world coordinates
•  viewing transformation
•  map all geometry from world coordinates into camera

coordinates

Geometry
Database

Model/View
Transform.

10

Lighting

•  lighting
•  compute brightness based on property of

material and light position(s)
•  computation is performed per-vertex

Geometry
Database

Model/View
Transform. Lighting

11

Perspective Transformation

•  perspective transformation
•  projecting the geometry onto the image plane
•  projective transformations and model/view

transformations can all be expressed with 4x4
matrix operations

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform.

12

Clipping

•  clipping
•  removal of parts of the geometry that fall

outside the visible screen or window region
•  may require re-tessellation of geometry

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

13

Scan Conversion

•  scan conversion
•  turn 2D drawing primitives (lines, polygons etc.)

into individual pixels (discretizing/sampling)
•  interpolate color across primitive
•  generate discrete fragments

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

14

Texture Mapping

•  texture mapping
•  “gluing images onto geometry”
•  color of every fragment is altered by looking

up a new color value from an image

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion Texturing

15

Depth Test
Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing

•  depth test
•  remove parts of geometry hidden behind

other geometric objects
•  perform on every individual fragment

•  other approaches (later)

16

Blending
Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing Blending

•  blending
•  final image: write fragments to pixels
•  draw from farthest to nearest
•  no blending – replace previous color
•  blending: combine new & old values with arithmetic

operations

17

Framebuffer
Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing Blending

Frame-
buffer

•  framebuffer
•  video memory on graphics board that

holds image
•  double-buffering: two separate buffers

•  draw into one while displaying other,
then swap to avoid flicker

255
255
255

255
255
255

0
255
255

0
255
255

0
255
255

255
155
0

255
155
0

155
255
155

0
255
255

0
255
255

255
155
0

255
155
0

155
255
155

0
255
255

0
255
255

18

Pipeline Advantages
•  modularity: logical separation of different components
•  easy to parallelize
•  earlier stages can already work on new data while later

stages still work with previous data
•  similar to pipelining in modern CPUs
•  but much more aggressive parallelization possible

(special purpose hardware!)
•  important for hardware implementations

•  only local knowledge of the scene is necessary

19

Pipeline Disadvantages

•  limited flexibility
•  some algorithms would require different

ordering of pipeline stages
•  hard to achieve while still preserving

compatibility
•  only local knowledge of scene is available

•  shadows, global illumination difficult

20

OpenGL (briefly)

21

OpenGL
•  API to graphics hardware

•  based on IRIS_GL by SGI
•  designed to exploit hardware optimized for display and

manipulation of 3D graphics
•  implemented on many different platforms
•  low level, powerful flexible
•  pipeline processing

•  set state as needed

22

Graphics State

•  set the state once, remains until overwritten
•  glColor3f(1.0, 1.0, 0.0) à set color to yellow
•  glSetClearColor(0.0, 0.0, 0.2) à dark blue bg
•  glEnable(LIGHT0) à turn on light
•  glEnable(GL_DEPTH_TEST) à hidden surf.

23

Geometry Pipeline
•  tell it how to interpret geometry

•  glBegin(<mode of geometric primitives>)
•  mode = GL_TRIANGLE, GL_POLYGON, etc.

•  feed it vertices
•  glVertex3f(-1.0, 0.0, -1.0)
•  glVertex3f(1.0, 0.0, -1.0)
•  glVertex3f(0.0, 1.0, -1.0)

•  tell it you’re done
•  glEnd()

24

Open GL: Geometric Primitives

glPointSize(float size);
glLineWidth(float width);
glColor3f(float r, float g, float b);
....

25

Code Sample
void display()
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 1.0, 0.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, -0.5);
 glVertex3f(0.75, 0.25, -0.5);
 glVertex3f(0.75, 0.75, -0.5);
 glVertex3f(0.25, 0.75, -0.5);
 glEnd();
 glFlush();
}
•  more OpenGL as course continues

26

GLUT

27

GLUT: OpenGL Utility Toolkit
•  developed by Mark Kilgard (also from SGI)
•  simple, portable window manager

•  opening windows
•  handling graphics contexts

•  handling input with callbacks
•  keyboard, mouse, window reshape events

•  timing
•  idle processing, idle events

•  designed for small/medium size applications
•  distributed as binaries

•  free, but not open source

28

Event-Driven Programming

•  main loop not under your control
•  vs. batch mode where you control the flow

•  control flow through event callbacks
•  redraw the window now
•  key was pressed
•  mouse moved

•  callback functions called from main loop
when events occur
•  mouse/keyboard state setting vs. redrawing

29

GLUT Callback Functions
 // you supply these kind of functions

void reshape(int w, int h);
void keyboard(unsigned char key, int x, int y);
void mouse(int but, int state, int x, int y);
void idle();
void display();

 // register them with glut

glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse);
glutIdleFunc(idle);
glutDisplayFunc(display);

 void glutDisplayFunc (void (*func)(void));
void glutKeyboardFunc (void (*func)(unsigned char key, int x, int y));
void glutIdleFunc (void (*func)());
void glutReshapeFunc (void (*func)(int width, int height));

30

GLUT Example 1
#include <GLUT/glut.h>
void display()
{
 glClearColor(0,0,0,1);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor4f(0,1,0,1);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, -0.5);
 glVertex3f(0.75, 0.25, -0.5);
 glVertex3f(0.75, 0.75, -0.5);
 glVertex3f(0.25, 0.75, -0.5);
 glEnd();
 glutSwapBuffers();
}

int main(int argc,char**argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(

GLUT_RGB|GLUT_DOUBLE);
 glutInitWindowSize(640,480);
 glutCreateWindow("glut1");
 glutDisplayFunc(display);
 glutMainLoop();
 return 0; // never reached
}

31

GLUT Example 2
#include <GLUT/glut.h>
void display()
{
 glRotatef(0.1, 0,0,1);

 glClearColor(0,0,0,1);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor4f(0,1,0,1);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, -0.5);
 glVertex3f(0.75, 0.25, -0.5);
 glVertex3f(0.75, 0.75, -0.5);
 glVertex3f(0.25, 0.75, -0.5);
 glEnd();
 glutSwapBuffers();
}

int main(int argc,char**argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(

GLUT_RGB|GLUT_DOUBLE);
 glutInitWindowSize(640,480);
 glutCreateWindow("glut2");
 glutDisplayFunc(display);
 glutMainLoop();
 return 0; // never reached
}

32

Redrawing Display

•  display only redrawn by explicit request
•  glutPostRedisplay() function
•  default window resize callback does this

•  idle called from main loop when no user input
•  good place to request redraw
•  will call display next time through event loop

•  should return control to main loop quickly
•  continues to rotate even when no user action

33

GLUT Example 3
#include <GLUT/glut.h>
void display()
{
 glRotatef(0.1, 0,0,1);

 glClearColor(0,0,0,1);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor4f(0,1,0,1);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, -0.5);
 glVertex3f(0.75, 0.25, -0.5);
 glVertex3f(0.75, 0.75, -0.5);
 glVertex3f(0.25, 0.75, -0.5);
 glEnd();
 glutSwapBuffers();
}

void idle() {
 glutPostRedisplay();
}

int main(int argc,char**argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(

GLUT_RGB|GLUT_DOUBLE);
 glutInitWindowSize(640,480);
 glutCreateWindow("glut1");
 glutDisplayFunc(display);
 glutIdleFunc(idle);
 glutMainLoop();
 return 0; // never reached
}

34

Keyboard/Mouse Callbacks
•  again, do minimal work
•  consider keypress that triggers animation

•  do not have loop calling display in callback!
• what if user hits another key during animation?

•  instead, use shared/global variables to keep
track of state
•  yes, OK to use globals for this!

•  then display function just uses current
variable value

35

GLUT Example 4
#include <GLUT/glut.h>

bool animToggle = true;
float angle = 0.1;

void display() {
 glRotatef(angle, 0,0,1);

 ...
}
void idle() {
 glutPostRedisplay();
}
int main(int argc,char**argv)
{ ...
 glutKeyboardFunc(doKey);
 ...
}

void doKey(unsigned char key,
 int x, int y) {

 if ('t' == key) {
 animToggle = !animToggle;
 if (!animToggle)
 glutIdleFunc(NULL);

 else
 glutIdleFunc(idle);
 } else if ('r' == key) {
 angle = -angle;
 }
 glutPostRedisplay();
}

36

Readings for Transform Lectures
•  FCG Chap 6 Transformation Matrices

•  except 6.1.6, 6.3.1
•  FCG Sect 13.3 Scene Graphs
•  RB Chap Viewing

•  Viewing and Modeling Transforms until Viewing Transformations
•  Examples of Composing Several Transformations through

Building an Articulated Robot Arm
•  RB Appendix Homogeneous Coordinates and Transformation

Matrices
•  until Perspective Projection

•  RB Chap Display Lists

