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Correction: W2V vs. V2W 
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Recorrection: Perspective Derivation 
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Reading for This Module 

•  FCG Chapter 10 Surface Shading 
•  FCG Section 8.2.4-8.2.5 

•  RB Chap Lighting 
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Lighting I 
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Rendering Pipeline 

Geometry 
Database 

Model/View 
Transform. Lighting Perspective 

Transform. Clipping 

Scan 
Conversion 

Depth 
Test Texturing Blending 

Frame- 
buffer 
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Projective Rendering Pipeline 

OCS - object/model  coordinate system 
 

WCS - world coordinate system  
 

VCS - viewing/camera/eye coordinate 
system  
 

CCS - clipping coordinate system  
 

NDCS - normalized device coordinate 
system 
 

DCS - device/display/screen coordinate 
system 

OCS O2W VCS 

CCS 

NDCS 

DCS 

modeling 
transformation 

viewing 
transformation 

projection 
transformation 

viewport 
transformation 

perspective 
divide 

object world viewing 

device 

normalized 
device 

clipping 

W2V V2C 

N2D 

C2N 

WCS 
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Goal 
•  simulate interaction of light and objects 
•  fast: fake it! 

•  approximate the look, ignore real physics 
•  get the physics (more) right 

•  BRDFs:  Bidirectional Reflection Distribution Functions 
•  local model: interaction of each object with light 
•  global model: interaction of objects with each other 
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Photorealistic Illumination 

[electricimage.com] 

• transport of energy from light sources to surfaces & points 
• global includes direct and indirect illumination – more later 

Henrik Wann Jensen 
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Illumination in the Pipeline 
•   local illumination 

•  only models light arriving directly from light 
source 

•  no interreflections or shadows 
•  can be added through tricks, multiple 

rendering passes 
•   light sources 

•  simple shapes 
•   materials 

•  simple, non-physical reflection models 
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Light Sources 
•  types of light sources 
•  glLightfv(GL_LIGHT0,GL_POSITION,light[]) 

•  directional/parallel lights 
•  real-life example: sun 
•  infinitely far source: homogeneous coord w=0 

•  point lights 
•  same intensity in all directions 

•  spot lights 
•  limited set of directions: 

•  point+direction+cutoff angle 
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Light Sources 

•  area lights 
•  light sources with a finite area 
•  more realistic model of many light sources 
•  not available with projective rendering pipeline 

 (i.e., not available with OpenGL) 
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Light Sources 

•  ambient lights 
•  no identifiable source or direction 
•  hack for replacing true global illumination  

•  (diffuse interreflection: light bouncing off from 
other objects) 
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Diffuse Interreflection 



15 

Ambient Light Sources 

•  scene lit only with an ambient light source 

Light Position 
Not Important 

Viewer Position 
Not Important 

Surface Angle 
Not Important 
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Directional Light Sources 

•  scene lit with directional and ambient light 

Light Position 
Not Important 

Viewer Position 
Not Important 

Surface Angle 
Important 
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Point Light Sources 

•  scene lit with ambient and point light source 

Light Position 
Important 

Viewer Position 
Important 

Surface Angle 
Important 
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Light Sources 
•  geometry: positions and directions 
•  standard: world coordinate system 

•  effect: lights fixed wrt world geometry 
•  demo: 

http://www.xmission.com/~nate/tutors.html 
•  alternative: camera coordinate system 

•  effect: lights attached to camera (car headlights) 
•  points and directions undergo normal model/

view transformation 
•  illumination calculations: camera coords 
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Types of Reflection 
•  specular (a.k.a. mirror or regular) reflection causes 

light to propagate without scattering. 
 

•  diffuse reflection sends light in all directions with 
equal energy. 
 

•  mixed reflection is a weighted  
combination of specular and diffuse. 
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Specular Highlights 
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Types of Reflection 

•  retro-reflection occurs when incident energy 
reflects in directions close to the incident 
direction, for a wide range of incident 
directions. 
 

•  gloss is the property of a material surface 
that involves mixed reflection and is 
responsible for the mirror like appearance of  
rough surfaces. 
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Reflectance Distribution Model 

•  most surfaces exhibit complex reflectances 
•  vary with incident and reflected directions. 
•  model with combination 

            +                      +                    =         
  

   specular + glossy + diffuse =  
   reflectance distribution 
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Surface Roughness 

•  at a microscopic scale, all 
real surfaces are rough 

•  cast shadows on 
themselves 

•  “mask” reflected light: 
shadow shadow 

Masked Light 
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Surface Roughness 

•  notice another effect of roughness: 
•  each “microfacet” is treated as a perfect mirror. 
•  incident light reflected in different directions by 

different facets. 
•  end result is mixed reflectance.   

•  smoother surfaces are more specular or glossy. 
•  random distribution of facet normals results in diffuse 

reflectance. 
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Physics of Diffuse Reflection 

•   ideal diffuse reflection 
•  very rough surface at the microscopic level 

•  real-world example: chalk  
•  microscopic variations mean incoming ray of 

light equally likely to be reflected in any 
direction over the hemisphere 

•  what does the reflected intensity depend on?  
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Lambert’s Cosine Law 

•  ideal diffuse surface reflection 
 the energy reflected by a small portion of a surface from a light source 
in a given direction is proportional to the cosine of the angle between 
that direction and the surface normal 

•  reflected intensity 
•  independent of viewing direction 
•   depends on surface orientation wrt light 

•  often called Lambertian surfaces 
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Lambert’s Law 

intuitively: cross-sectional area of  
the “beam” intersecting an element 
of surface area is smaller for greater  
angles with the normal. 
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Computing Diffuse Reflection 
•  depends on angle of incidence: angle between surface 
normal and incoming light 
•  Idiffuse = kd Ilight cos θ 

  

•  in practice use vector arithmetic 
•  Idiffuse = kd Ilight (n • l) 

•  always normalize vectors used in lighting!!! 
•  n,  l should be unit vectors 

•  scalar (B/W intensity) or 3-tuple or 4-tuple (color) 
•  kd: diffuse coefficient, surface color 
•  Ilight: incoming light intensity 
•  Idiffuse: outgoing light intensity (for diffuse reflection) 

n l 

θ 
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Diffuse Lighting Examples 

•  Lambertian sphere from several lighting 
angles: 

•  need only consider angles from 0° to 90° 
•  why? 
•  demo: Brown exploratory on reflection 
•  http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/

exploratories/applets/reflection2D/reflection_2d_java_browser.html 
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Specular Highlights 

Michiel van de Panne 
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Physics of Specular Reflection 

•  at the microscopic level a specular reflecting 
surface is very smooth 

•  thus rays of light are likely to bounce off the 
microgeometry in a mirror-like fashion 

•  the smoother the surface, the closer it 
becomes to a perfect mirror 
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Optics of Reflection 

•  reflection follows Snell’s Law: 
•  incoming ray and reflected ray lie in a plane 

with the surface normal 
•  angle the reflected ray forms with surface 

normal equals angle formed by incoming ray 
and surface normal 

θ(l)ight = θ(r)eflection 
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Non-Ideal Specular Reflectance 
•  Snell’s law applies to perfect mirror-like surfaces, 

but aside from mirrors (and chrome) few surfaces 
exhibit perfect specularity 

•  how can we capture the “softer” reflections of 
surface that are glossy, not mirror-like? 

•   one option: model the microgeometry of the 
surface and explicitly bounce rays off of it 

•   or…  
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Empirical Approximation 

•   we expect most reflected light to travel in 
direction predicted by Snell’s Law 

•   but because of microscopic surface 
variations, some light may be reflected in a 
direction slightly off the ideal reflected ray 

•   as angle from ideal reflected ray increases, 
we expect less light to be reflected 
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Empirical Approximation 
•   angular falloff 

•   how might we model this falloff? 
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•  nshiny : purely empirical 
constant, varies rate of falloff 
•  ks: specular coefficient, 
highlight color 
•  no physical basis, works  
ok in practice 

v 

! 

Ispecular = ksIlight (cos")
nshiny

Phong Lighting 

•  most common lighting model in computer 
graphics 

•  (Phong Bui-Tuong, 1975) 
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Phong Lighting: The nshiny Term 

•  Phong reflectance term drops off with divergence of viewing angle from 
ideal reflected ray 

•  what does this term control, visually? 

Viewing angle – reflected angle 
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Phong Examples 

varying l 

varying nshiny 
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Calculating Phong Lighting 

•  compute cosine term of Phong lighting with vectors 

•  v: unit vector towards viewer/eye 
•  r: ideal reflectance direction (unit vector) 
•  ks: specular component 

•  highlight color   
•  Ilight: incoming light intensity 

•  how to efficiently calculate r ? 

v 

! 

Ispecular = ksIlight (v•r)
nshiny
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Calculating R Vector 
P = N cos θ |L| |N|      projection of L onto N 
P = N cos θ       L, N are unit length 
P = N ( N · L )  
 

L 
P 

N 

θ
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Calculating R Vector 
P = N cos θ |L| |N|      projection of L onto N 
P = N cos θ       L, N are unit length 
P = N ( N · L )  
 
2 P = R + L 
2 P – L = R 
2 (N ( N · L )) - L = R L 

P 

P 

R 

L 

N 

θ
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Phong Lighting Model 

•  combine ambient, diffuse, specular components 

•  commonly called Phong lighting 
•  once per light 
•  once per color component 

•  reminder: normalize your vectors when calculating! 
•  normalize all vectors: n,l,r,v 

! 

Itotal = kaIambient + Ii (
i=1

# lights

" kd (n• li ) + ks(v•ri )
nshiny )
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Phong Lighting: Intensity Plots 
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Blinn-Phong Model 

•  variation with better physical interpretation 
•  Jim Blinn, 1977 

•  h: halfway vector 
•  h must also be explicitly normalized: h / |h| 
•  highlight occurs when h near n 

 

l 

n 
v 

h 

! 

Iout (x) = Iin (x)(ks (h•n)
nshiny );with h = (l + v) /2
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Light Source Falloff 

•  quadratic falloff 
•  brightness of objects depends on power per 

unit area that hits the object 
•  the power per unit area for a point or spot light 

decreases quadratically with distance 
Area 4πr2 

Area 4π(2r)2 
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Light Source Falloff 

•  non-quadratic falloff 
•  many systems allow for other falloffs 
•  allows for faking effect of area light sources 
•  OpenGL / graphics hardware 

•  Io: intensity of light source 
•  x: object point 
•  r: distance of light from x 

02

1)( I
cbrar

Iin !
++

=x
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Lighting Review 

•  lighting models 
•  ambient  

•  normals don’t matter 
•  Lambert/diffuse  

•  angle between surface normal and light 
•  Phong/specular  

•  surface normal, light, and viewpoint 
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Lighting in OpenGL 
•  light source:  amount of RGB light emitted 

•  value represents percentage of full intensity 
e.g., (1.0,0.5,0.5) 

•  every light source emits ambient, diffuse, and specular 
light 

•  materials:  amount of RGB light reflected 
•  value represents percentage reflected 

e.g., (0.0,1.0,0.5) 
•  interaction: multiply components 

•  red light (1,0,0) x green surface (0,1,0) = black (0,0,0) 
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Lighting in OpenGL 
glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light_rgba ); 
glLightfv(GL_LIGHT0, GL_DIFFUSE, dif_light_rgba ); 
glLightfv(GL_LIGHT0, GL_SPECULAR, spec_light_rgba ); 
glLightfv(GL_LIGHT0, GL_POSITION, position); 
glEnable(GL_LIGHT0); 
 

glMaterialfv( GL_FRONT, GL_AMBIENT, ambient_rgba ); 
glMaterialfv( GL_FRONT, GL_DIFFUSE, diffuse_rgba ); 
glMaterialfv( GL_FRONT, GL_SPECULAR, specular_rgba ); 
glMaterialfv( GL_FRONT, GL_SHININESS, n );   

•  warning: glMaterial is expensive and tricky 
•  use cheap and simple glColor when possible 
•  see OpenGL Pitfall #14 from Kilgard’s list  
http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/ 
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Shading 
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Lighting vs. Shading 

•  lighting 
•  process of computing the luminous intensity 

(i.e., outgoing light) at a particular 3-D point, 
usually on a surface 

•  shading 
•  the process of assigning colors to pixels 

•  (why the distinction?) 
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Applying Illumination 

•  we now have an illumination model for a point 
on a surface 

•  if surface defined as mesh of polygonal facets, 
which points should we use?  
•  fairly expensive calculation 
•  several possible answers, each with different 

implications for visual quality of result 
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Applying Illumination 

•  polygonal/triangular models 
•  each facet has a constant surface normal 
•  if light is directional, diffuse reflectance is 

constant across the facet 
•  why? 
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Flat Shading 

•  simplest approach calculates illumination at a 
single point for each polygon 

•  obviously inaccurate for smooth surfaces 
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Flat Shading Approximations 
•  if an object really is faceted, is this 

accurate? 
•  no! 

•  for point sources, the direction to light 
varies across the facet 

•  for specular reflectance, direction to 
eye varies across the facet 
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Improving Flat Shading 
•  what if evaluate Phong lighting model at each pixel 

of the polygon? 
•  better, but result still clearly faceted 

•  for smoother-looking surfaces 
we introduce vertex normals at each 
vertex 
•  usually different from facet normal 
•  used only for shading 
•  think of as a better approximation of the real surface 

that the polygons approximate 
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Vertex Normals 

•  vertex normals may be  
•  provided with the model 
•  computed from first principles  
•  approximated by  

averaging the normals  
of the facets that  
share the vertex 



58 

Gouraud Shading 

•  most common approach, and what OpenGL does 
•  perform Phong lighting at the vertices 
•  linearly interpolate the resulting colors over faces 

•  along edges 
•  along scanlines 

C1 

C2 

C3 

edge: mix of c1, c2 

edge: mix of c1, c3 
interior: mix of c1, c2, c3 

does this eliminate the facets? 
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Gouraud Shading Artifacts 

•  often appears dull, chalky 
•  lacks accurate specular component 

•  if included, will be averaged over entire 
polygon 

C1 

C2 

C3 

this interior shading missed! 

C1 

C2 

C3 

this vertex shading spread 
over too much area 
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Gouraud Shading Artifacts 

•  Mach bands 
•  eye enhances discontinuity in first derivative 
•  very disturbing, especially for highlights 



61 

Gouraud Shading Artifacts 

C1 

C2 

C3 

C4 

Discontinuity in rate 
of color change 

occurs here 

•  Mach bands 
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Gouraud Shading Artifacts 

•  perspective transformations  
•  affine combinations only invariant under affine, 

not under perspective transformations 
•  thus, perspective projection alters the linear 

interpolation! 

Z – into the scene 

Image 
plane 
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Gouraud Shading Artifacts 
•  perspective transformation problem 
•  colors slightly “swim” on the surface as objects move 

relative to the camera 
•  usually ignored since often only small difference 

•  usually smaller than changes from lighting variations 
•  to do it right 

•  either shading in object space 
•  or correction for perspective foreshortening 
•  expensive – thus hardly ever done for colors 
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Phong Shading 

•  linearly interpolating surface normal across the facet, 
applying Phong lighting model at every pixel 
•  same input as Gouraud shading 
•  pro: much smoother results 
•  con: considerably more expensive 

•  not the same as Phong lighting 
•   common confusion 
•   Phong lighting: empirical model to calculate illumination at 

a point on a surface 
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Phong Shading 

•  linearly interpolate the vertex normals 
•  compute lighting equations at each pixel 
•  can use specular component 

N1 

N2 

N3 

N4 

! 

Itotal = kaIambient + Ii kd n " li( ) + ks v " ri( )nshiny( )
i=1

# lights

#
remember: normals used in  
diffuse and specular terms 

 
 

discontinuity in normal’s rate of  
change harder to detect 
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Phong Shading Difficulties 

•   computationally expensive 
•  per-pixel vector normalization and lighting 

computation! 
•  floating point operations required 

•   lighting after perspective projection 
•  messes up the angles between vectors 
•  have to keep eye-space vectors around 

•   no direct support in pipeline hardware 
•  but can be simulated with texture mapping 
•  stay tuned for modern hardware: shaders 
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Gouraud              Phong 

Shading Artifacts: Silhouettes 

•  polygonal silhouettes remain 
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A 

D 

C 

B 

Interpolate between 
AB and AD 

i
!

B 

A 

D 

C 

Interpolate between 
CD and AD 

Rotate -90o 
and color 

same point 

Shading Artifacts: Orientation 
•   interpolation dependent on polygon orientation 

•   view dependence! 
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B 

A 

C 

vertex B shared by two rectangles 
on the right, but not by the one on 
the left 

E 

D 

F 

H 

G 
first portion of the scanline 
is interpolated between DE and AC 
 
second portion of the scanline 
is interpolated between BC and GH 
 
a large discontinuity could arise 

Shading Artifacts: Shared Vertices 
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Shading Models Summary 
•  flat shading 

•  compute Phong lighting once for entire 
polygon 

•  Gouraud shading 
•  compute Phong lighting at the vertices and 

interpolate lighting values across polygon 
•  Phong shading 

•  compute averaged vertex normals 
•  interpolate normals across polygon and 

perform Phong lighting across polygon 
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Shutterbug: Flat Shading 
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Shutterbug: Gouraud Shading 
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Shutterbug: Phong Shading 
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Non-Photorealistic Shading 
•  cool-to-warm shading 

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 

! 

kw =
1+ n " l
2

,c = kwcw + (1# kw )cc
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Non-Photorealistic Shading 
•  draw silhouettes: if                      , e=edge-eye vector  
•  draw creases: if  

! 

(e "n0)(e "n1 ) # 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 

! 

(n0 "n1 ) # threshold
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Computing Normals 
•  per-vertex normals by interpolating per-facet 

normals 
•  OpenGL supports both 

•  computing normal for a polygon 

c 

b 

a 
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Computing Normals 
•  per-vertex normals by interpolating per-facet 

normals 
•  OpenGL supports both 

•  computing normal for a polygon 
•  three points form two vectors 

c 

b 

a 

c-b 
a-b 
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Computing Normals 
•  per-vertex normals by interpolating per-facet normals 

•  OpenGL supports both 
•  computing normal for a polygon 

•  three points form two vectors 
•  cross: normal of plane 

gives direction 
•  normalize to unit length! 

•  which side is up? 
•  convention: points in 

counterclockwise  
order 

c 

b 

a 

c-b 
a-b 

(a-b) x (c-b) 
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Specifying Normals 
•  OpenGL state machine 

•  uses last normal specified 
•  if no normals specified, assumes all identical 

•  per-vertex normals  
glNormal3f(1,1,1);  
glVertex3f(3,4,5);  
glNormal3f(1,1,0); 
glVertex3f(10,5,2); 

•  per-face normals 
glNormal3f(1,1,1);  
glVertex3f(3,4,5);  
glVertex3f(10,5,2); 
 


