
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Lighting/Shading

University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2013

Tamara Munzner

2

Correction: W2V vs. V2W

•  MV2W=(MW2V)-1
=R-1T-1

!

Mview2world =

ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

1 0 0 (ex
0 1 0 (ey
0 0 1 (ez
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

=

ux uy uz (e •u
vx vy vz (e • v
wx wy wz (e •w
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

MV2W =

ux uy uz "ex # ux + "ey # uy + "ez # uz
vx vy vz "ex #vx + "ey #vy + "ez #vz
wx wy wz "ex #wx + "ey #wy + "ez #wz

0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

slide 26, Viewing

3

Recorrection: Perspective Derivation

!

x '
y '
z'
w'

"

$
$
$
$

%

&

'
'
'
'

=

E 0 A 0
0 F B 0
0 0 C D
0 0 (1 0

"

$
$
$
$

%

&

'
'
'
'

x
y
z
1

"

$
$
$
$

%

&

'
'
'
'

!

y'= Fy + Bz, y'
w'

=
Fy + Bz
w'

, 1=
Fy + Bz
w'

, 1=
Fy + Bz
"z

,

1 = F y
"z

+ B z
"z

, 1= F y
"z

" B, 1= F top
"("near)

" B,

!

x'= Ex + Az
y'= Fy + Bz
z'= Cz + D
w'= "z

x = left ! "x / "w = #1
x = right ! "x / "w =1
y = top ! "y / "w =1
y = bottom! "y / "w = #1
z = #near ! "z / "w = #1
z = # far ! "z / "w =1

!

1= F top
near

" B

 z axis flip!

L/R sign error slide 91, Viewing

4

Reading for This Module

•  FCG Chapter 10 Surface Shading
•  FCG Section 8.2.4-8.2.5

•  RB Chap Lighting

5

Lighting I

6

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing Blending

Frame-
buffer

7

Projective Rendering Pipeline

OCS - object/model coordinate system

WCS - world coordinate system

VCS - viewing/camera/eye coordinate
system

CCS - clipping coordinate system

NDCS - normalized device coordinate
system

DCS - device/display/screen coordinate
system

OCS O2W VCS

CCS

NDCS

DCS

modeling
transformation

viewing
transformation

projection
transformation

viewport
transformation

perspective
divide

object world viewing

device

normalized
device

clipping

W2V V2C

N2D

C2N

WCS

8

Goal
•  simulate interaction of light and objects
•  fast: fake it!

•  approximate the look, ignore real physics
•  get the physics (more) right

•  BRDFs: Bidirectional Reflection Distribution Functions
•  local model: interaction of each object with light
•  global model: interaction of objects with each other

9

Photorealistic Illumination

[electricimage.com]

• transport of energy from light sources to surfaces & points
• global includes direct and indirect illumination – more later

Henrik Wann Jensen

10

Illumination in the Pipeline
•  local illumination

•  only models light arriving directly from light
source

•  no interreflections or shadows
•  can be added through tricks, multiple

rendering passes
•  light sources

•  simple shapes
•  materials

•  simple, non-physical reflection models

11

Light Sources
•  types of light sources
•  glLightfv(GL_LIGHT0,GL_POSITION,light[])

•  directional/parallel lights
•  real-life example: sun
•  infinitely far source: homogeneous coord w=0

•  point lights
•  same intensity in all directions

•  spot lights
•  limited set of directions:

•  point+direction+cutoff angle

!
!
!
!

"

#

$
$
$
$

%

&

0
z
y
x

!
!
!
!

"

#

$
$
$
$

%

&

1
z
y
x

12

Light Sources

•  area lights
•  light sources with a finite area
•  more realistic model of many light sources
•  not available with projective rendering pipeline

 (i.e., not available with OpenGL)

13

Light Sources

•  ambient lights
•  no identifiable source or direction
•  hack for replacing true global illumination

•  (diffuse interreflection: light bouncing off from
other objects)

14

Diffuse Interreflection

15

Ambient Light Sources

•  scene lit only with an ambient light source

Light Position
Not Important

Viewer Position
Not Important

Surface Angle
Not Important

16

Directional Light Sources

•  scene lit with directional and ambient light

Light Position
Not Important

Viewer Position
Not Important

Surface Angle
Important

17

Point Light Sources

•  scene lit with ambient and point light source

Light Position
Important

Viewer Position
Important

Surface Angle
Important

18

Light Sources
•  geometry: positions and directions
•  standard: world coordinate system

•  effect: lights fixed wrt world geometry
•  demo:

http://www.xmission.com/~nate/tutors.html
•  alternative: camera coordinate system

•  effect: lights attached to camera (car headlights)
•  points and directions undergo normal model/

view transformation
•  illumination calculations: camera coords

19

Types of Reflection
•  specular (a.k.a. mirror or regular) reflection causes

light to propagate without scattering.

•  diffuse reflection sends light in all directions with
equal energy.

•  mixed reflection is a weighted
combination of specular and diffuse.

20

Specular Highlights

21

Types of Reflection

•  retro-reflection occurs when incident energy
reflects in directions close to the incident
direction, for a wide range of incident
directions.

•  gloss is the property of a material surface
that involves mixed reflection and is
responsible for the mirror like appearance of
rough surfaces.

22

Reflectance Distribution Model

•  most surfaces exhibit complex reflectances
•  vary with incident and reflected directions.
•  model with combination

 + + =

 specular + glossy + diffuse =
 reflectance distribution

23

Surface Roughness

•  at a microscopic scale, all
real surfaces are rough

•  cast shadows on
themselves

•  “mask” reflected light:
shadow shadow

Masked Light

24

Surface Roughness

•  notice another effect of roughness:
•  each “microfacet” is treated as a perfect mirror.
•  incident light reflected in different directions by

different facets.
•  end result is mixed reflectance.

•  smoother surfaces are more specular or glossy.
•  random distribution of facet normals results in diffuse

reflectance.

25

Physics of Diffuse Reflection

•  ideal diffuse reflection
•  very rough surface at the microscopic level

•  real-world example: chalk
•  microscopic variations mean incoming ray of

light equally likely to be reflected in any
direction over the hemisphere

•  what does the reflected intensity depend on?

26

Lambert’s Cosine Law

•  ideal diffuse surface reflection
 the energy reflected by a small portion of a surface from a light source
in a given direction is proportional to the cosine of the angle between
that direction and the surface normal

•  reflected intensity
•  independent of viewing direction
•  depends on surface orientation wrt light

•  often called Lambertian surfaces

27

Lambert’s Law

intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

28

Computing Diffuse Reflection
•  depends on angle of incidence: angle between surface
normal and incoming light
•  Idiffuse = kd Ilight cos θ

•  in practice use vector arithmetic
•  Idiffuse = kd Ilight (n • l)

•  always normalize vectors used in lighting!!!
•  n, l should be unit vectors

•  scalar (B/W intensity) or 3-tuple or 4-tuple (color)
•  kd: diffuse coefficient, surface color
•  Ilight: incoming light intensity
•  Idiffuse: outgoing light intensity (for diffuse reflection)

n l

θ

29

Diffuse Lighting Examples

•  Lambertian sphere from several lighting
angles:

•  need only consider angles from 0° to 90°
•  why?
•  demo: Brown exploratory on reflection
•  http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/

exploratories/applets/reflection2D/reflection_2d_java_browser.html

30

Specular Highlights

Michiel van de Panne

31

Physics of Specular Reflection

•  at the microscopic level a specular reflecting
surface is very smooth

•  thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

•  the smoother the surface, the closer it
becomes to a perfect mirror

32

Optics of Reflection

•  reflection follows Snell’s Law:
•  incoming ray and reflected ray lie in a plane

with the surface normal
•  angle the reflected ray forms with surface

normal equals angle formed by incoming ray
and surface normal

θ(l)ight = θ(r)eflection

33

Non-Ideal Specular Reflectance
•  Snell’s law applies to perfect mirror-like surfaces,

but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

•  how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

•  one option: model the microgeometry of the
surface and explicitly bounce rays off of it

•  or…

34

Empirical Approximation

•  we expect most reflected light to travel in
direction predicted by Snell’s Law

•  but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

•  as angle from ideal reflected ray increases,
we expect less light to be reflected

35

Empirical Approximation
•  angular falloff

•  how might we model this falloff?

36

•  nshiny : purely empirical
constant, varies rate of falloff
•  ks: specular coefficient,
highlight color
•  no physical basis, works
ok in practice

v

!

Ispecular = ksIlight (cos")
nshiny

Phong Lighting

•  most common lighting model in computer
graphics

•  (Phong Bui-Tuong, 1975)

37

Phong Lighting: The nshiny Term

•  Phong reflectance term drops off with divergence of viewing angle from
ideal reflected ray

•  what does this term control, visually?

Viewing angle – reflected angle

38

Phong Examples

varying l

varying nshiny

39

Calculating Phong Lighting

•  compute cosine term of Phong lighting with vectors

•  v: unit vector towards viewer/eye
•  r: ideal reflectance direction (unit vector)
•  ks: specular component

•  highlight color
•  Ilight: incoming light intensity

•  how to efficiently calculate r ?

v

!

Ispecular = ksIlight (v•r)
nshiny

40

Calculating R Vector
P = N cos θ |L| |N| projection of L onto N
P = N cos θ L, N are unit length
P = N (N · L)

L
P

N

θ

41

Calculating R Vector
P = N cos θ |L| |N| projection of L onto N
P = N cos θ L, N are unit length
P = N (N · L)

2 P = R + L
2 P – L = R
2 (N (N · L)) - L = R L

P

P

R

L

N

θ

42

Phong Lighting Model

•  combine ambient, diffuse, specular components

•  commonly called Phong lighting
•  once per light
•  once per color component

•  reminder: normalize your vectors when calculating!
•  normalize all vectors: n,l,r,v

!

Itotal = kaIambient + Ii (
i=1

lights

" kd (n• li) + ks(v•ri)
nshiny)

43

Phong Lighting: Intensity Plots

44

Blinn-Phong Model

•  variation with better physical interpretation
•  Jim Blinn, 1977

•  h: halfway vector
•  h must also be explicitly normalized: h / |h|
•  highlight occurs when h near n

l

n
v

h

!

Iout (x) = Iin (x)(ks (h•n)
nshiny);with h = (l + v) /2

45

Light Source Falloff

•  quadratic falloff
•  brightness of objects depends on power per

unit area that hits the object
•  the power per unit area for a point or spot light

decreases quadratically with distance
Area 4πr2

Area 4π(2r)2

46

Light Source Falloff

•  non-quadratic falloff
•  many systems allow for other falloffs
•  allows for faking effect of area light sources
•  OpenGL / graphics hardware

•  Io: intensity of light source
•  x: object point
•  r: distance of light from x

02

1)(I
cbrar

Iin !
++

=x

47

Lighting Review

•  lighting models
•  ambient

•  normals don’t matter
•  Lambert/diffuse

•  angle between surface normal and light
•  Phong/specular

•  surface normal, light, and viewpoint

48

Lighting in OpenGL
•  light source: amount of RGB light emitted

•  value represents percentage of full intensity
e.g., (1.0,0.5,0.5)

•  every light source emits ambient, diffuse, and specular
light

•  materials: amount of RGB light reflected
•  value represents percentage reflected

e.g., (0.0,1.0,0.5)
•  interaction: multiply components

•  red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

49

Lighting in OpenGL
glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light_rgba);
glLightfv(GL_LIGHT0, GL_DIFFUSE, dif_light_rgba);
glLightfv(GL_LIGHT0, GL_SPECULAR, spec_light_rgba);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glEnable(GL_LIGHT0);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);
glMaterialfv(GL_FRONT, GL_SHININESS, n);

•  warning: glMaterial is expensive and tricky
•  use cheap and simple glColor when possible
•  see OpenGL Pitfall #14 from Kilgard’s list
http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/

50

Shading

51

Lighting vs. Shading

•  lighting
•  process of computing the luminous intensity

(i.e., outgoing light) at a particular 3-D point,
usually on a surface

•  shading
•  the process of assigning colors to pixels

•  (why the distinction?)

52

Applying Illumination

•  we now have an illumination model for a point
on a surface

•  if surface defined as mesh of polygonal facets,
which points should we use?
•  fairly expensive calculation
•  several possible answers, each with different

implications for visual quality of result

53

Applying Illumination

•  polygonal/triangular models
•  each facet has a constant surface normal
•  if light is directional, diffuse reflectance is

constant across the facet
•  why?

54

Flat Shading

•  simplest approach calculates illumination at a
single point for each polygon

•  obviously inaccurate for smooth surfaces

55

Flat Shading Approximations
•  if an object really is faceted, is this

accurate?
•  no!

•  for point sources, the direction to light
varies across the facet

•  for specular reflectance, direction to
eye varies across the facet

56

Improving Flat Shading
•  what if evaluate Phong lighting model at each pixel

of the polygon?
•  better, but result still clearly faceted

•  for smoother-looking surfaces
we introduce vertex normals at each
vertex
•  usually different from facet normal
•  used only for shading
•  think of as a better approximation of the real surface

that the polygons approximate

57

Vertex Normals

•  vertex normals may be
•  provided with the model
•  computed from first principles
•  approximated by

averaging the normals
of the facets that
share the vertex

58

Gouraud Shading

•  most common approach, and what OpenGL does
•  perform Phong lighting at the vertices
•  linearly interpolate the resulting colors over faces

•  along edges
•  along scanlines

C1

C2

C3

edge: mix of c1, c2

edge: mix of c1, c3
interior: mix of c1, c2, c3

does this eliminate the facets?

59

Gouraud Shading Artifacts

•  often appears dull, chalky
•  lacks accurate specular component

•  if included, will be averaged over entire
polygon

C1

C2

C3

this interior shading missed!

C1

C2

C3

this vertex shading spread
over too much area

60

Gouraud Shading Artifacts

•  Mach bands
•  eye enhances discontinuity in first derivative
•  very disturbing, especially for highlights

61

Gouraud Shading Artifacts

C1

C2

C3

C4

Discontinuity in rate
of color change

occurs here

•  Mach bands

62

Gouraud Shading Artifacts

•  perspective transformations
•  affine combinations only invariant under affine,

not under perspective transformations
•  thus, perspective projection alters the linear

interpolation!

Z – into the scene

Image
plane

63

Gouraud Shading Artifacts
•  perspective transformation problem
•  colors slightly “swim” on the surface as objects move

relative to the camera
•  usually ignored since often only small difference

•  usually smaller than changes from lighting variations
•  to do it right

•  either shading in object space
•  or correction for perspective foreshortening
•  expensive – thus hardly ever done for colors

64

Phong Shading

•  linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel
•  same input as Gouraud shading
•  pro: much smoother results
•  con: considerably more expensive

•  not the same as Phong lighting
•  common confusion
•  Phong lighting: empirical model to calculate illumination at

a point on a surface

65

Phong Shading

•  linearly interpolate the vertex normals
•  compute lighting equations at each pixel
•  can use specular component

N1

N2

N3

N4

!

Itotal = kaIambient + Ii kd n " li() + ks v " ri()nshiny()
i=1

lights

#
remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

66

Phong Shading Difficulties

•  computationally expensive
•  per-pixel vector normalization and lighting

computation!
•  floating point operations required

•  lighting after perspective projection
•  messes up the angles between vectors
•  have to keep eye-space vectors around

•  no direct support in pipeline hardware
•  but can be simulated with texture mapping
•  stay tuned for modern hardware: shaders

67

Gouraud Phong

Shading Artifacts: Silhouettes

•  polygonal silhouettes remain

68

A

D

C

B

Interpolate between
AB and AD

i
!

B

A

D

C

Interpolate between
CD and AD

Rotate -90o
and color

same point

Shading Artifacts: Orientation
•  interpolation dependent on polygon orientation

•  view dependence!

69

B

A

C

vertex B shared by two rectangles
on the right, but not by the one on
the left

E

D

F

H

G
first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise

Shading Artifacts: Shared Vertices

70

Shading Models Summary
•  flat shading

•  compute Phong lighting once for entire
polygon

•  Gouraud shading
•  compute Phong lighting at the vertices and

interpolate lighting values across polygon
•  Phong shading

•  compute averaged vertex normals
•  interpolate normals across polygon and

perform Phong lighting across polygon

71

Shutterbug: Flat Shading

72

Shutterbug: Gouraud Shading

73

Shutterbug: Phong Shading

74

Non-Photorealistic Shading
•  cool-to-warm shading

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

!

kw =
1+ n " l
2

,c = kwcw + (1# kw)cc

75

Non-Photorealistic Shading
•  draw silhouettes: if , e=edge-eye vector
•  draw creases: if

!

(e "n0)(e "n1) # 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

!

(n0 "n1) # threshold

76

Computing Normals
•  per-vertex normals by interpolating per-facet

normals
•  OpenGL supports both

•  computing normal for a polygon

c

b

a

77

Computing Normals
•  per-vertex normals by interpolating per-facet

normals
•  OpenGL supports both

•  computing normal for a polygon
•  three points form two vectors

c

b

a

c-b
a-b

78

Computing Normals
•  per-vertex normals by interpolating per-facet normals

•  OpenGL supports both
•  computing normal for a polygon

•  three points form two vectors
•  cross: normal of plane

gives direction
•  normalize to unit length!

•  which side is up?
•  convention: points in

counterclockwise
order

c

b

a

c-b
a-b

(a-b) x (c-b)

79

Specifying Normals
•  OpenGL state machine

•  uses last normal specified
•  if no normals specified, assumes all identical

•  per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

•  per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

