Outline

• defining computer graphics
• course structure
• course content overview
What is Computer Graphics?

• create or manipulate images with computer
 • this course: algorithms for image generation
What is CG used for?

• movies
 • animation
 • special effects
What is CG used for?

- computer games
What is CG used for?

- images
 - design
 - advertising
- art
What is CG used for?

- virtual reality / immersive displays
What is CG used for?

- graphical user interfaces
 - modeling systems
 - applications
- simulation & visualization
Real or CG?

http://www.alias.com/eng/etc/fakeorfoto/quiz.html
Real or CG?
Real or CG?
Real or CG?
Expectations

- hard course!
 - heavy programming and heavy math
- fun course!
 - graphics programming addictive, create great demos
- programming prereq
 - CPSC 221 (Program Design and Data Structures)
 - course language is C++/C
- math prereq
 - MATH 200 (Calculus III)
 - MATH 221/223 (Matrix Algebra/Linear Algebra)
Course Structure

- 39% programming projects
 - 8% project 1 (building beasties with cubes and math)
 - 8% project 2
 - 8% project 3
 - 15% project 4 (create your own graphics game)
- 25% final
- 20% midterm (week 9 Fri 3/8)
- 16% written assignments
 - 4% each HW 1/2/3/4
- programming projects and homeworks synchronized
Programming Projects

• structure
 • C++, Linux
 • OK to cross-platform develop on Windows, Mac
 • OpenGL graphics library
 • GLUT for platform-independent windows/UI
 • face to face grading in lab

• Hall of Fame
 • first project: building beasties
 • previous years: bison, spiders, armadillos, giraffes, frogs, elephants, birds, poodles, dinos, cats…
 • last project: create your own graphics game
Late Work

- 3 grace days
 - for unforeseen circumstances
 - strong recommendation: don’t use early in term
 - handing in late uses up automatically unless you tell us
- otherwise: 50% if one day (24 hrs) late, 0% afterwards
- only exception: severe illness or crisis
 - as per UBC rules
 - must let me know ASAP (in person or email)
 - at latest, 7 days after return to school
 - must also turn in form
 - with documentation (doctor note)
Regrading

- to request assignment or exam regrade
 - give me paper to be regraded, and also in writing
 - what problem you're disputing
 - detailed explanation why you think grader was wrong
 - I will not accept until next class after solutions handed out
 - exception: simple arithmetic errors
- I may regrade entire assignment
 - thus even if I agree with your original request, your score may nevertheless end up higher or lower
Course Information

• course web page is main resource
 • http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013
 • updated often, reload frequently

• discussion group: Piazza
 • signup: https://piazza.com/ubc.ca/spring2013/cpsc314
 • standard: https://piazza.com/class#spring2013/cpsc314
 • use Piazza, not direct email, for all questions
 • make posts private if you need to post your code
Teaching Staff

• instructor: Tamara Munzner
 • call me Tamara or Prof. Munzner, your choice
 • tmm@cs.ubc.ca
 • office hrs in ICICS/CS 005 (our lab)
 • Fridays right after class, 2-3
 • or by appointment in X661

• TAs: Peter Beshai, James Gregson, Yufeng Zhu
 • pbeshai@cs, jgregson@cs, mike323zyf@gmail
Labs

- labs start next week, no labs this week
- attend one (or more) labs per week
 - Mon 2-3, Tue 1-2, Fri 12-1
 - TA coverage TBA
- mix of activities
 - example problems in spirit of written assignments and exams
 - help with programming projects
 - tutorials
- no deliverables (unlike intro classes)
- strongly recommend that you attend
- if you can’t attend your regular one, ok to drop by another if there’s space
Textbooks

- Fundamentals of Computer Graphics
 - Peter Shirley, AK Peters, 3nd edition

- OpenGL Programming Guide, v 3.1
 - OpenGL Architecture Review Board
 - v 1.1 available for free online
 - aka “The Red Book”

- readings posted on schedule page
 - strongly encouraged but not mandatory
Learning OpenGL

• this is a graphics course using OpenGL
 • not a course *on* OpenGL
• upper-level class: learning APIs mostly on your own
 • only minimal lecture coverage
 • basics, some of the tricky bits
• OpenGL Red Book
• many tutorial sites on the web
 • nehe.gamedev.net
Citation

• cite all sources of information
 • what to cite
 • study group members, books, web sites
 • where to cite it
 • README for programming projects
 • end of writeup for written assignments
 • http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013/cheat.html
Plagiarism and Cheating

- don’t cheat, I will prosecute
 - insult to your fellow students and to me
- programming and homework writeups must be individual work
 - can discuss ideas, browse Web
 - cannot just copy code or answers
 - cannot do team coding
 - exception: final project can be team of two
- you must be able to explain algorithms during face-to-face demo
 - or no credit for that part of assignment
 - and possibly prosecution
Plagiarism and Cheating

• submit statement that you’ve read and understood before we’ll mark your work
 • http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013/cheat.html
Course Content Overview
This Course

• we cover
 • basic **algorithms** for
 • rendering – displaying models
 • (modeling – generating models)
 • (animation – generating motion)
 • programming in OpenGL, C++

• we do not cover
 • art/design issues
 • commercial software packages
Other Graphics Courses

- CPSC 424: Geometric Modeling
 - offered now
- CPSC 426: Computer Animation
 - offered next year
- CPSC 514: Image-based Modeling and Rendering
- CPSC 526: Computer Animation
- CPSC 533A: Digital Geometry
- CPSC 533B: Animation Physics
- CPSC 547: Information Visualization
- CPSC 530P: Sensorimotor Computation
Rendering

- creating images from models
 - geometric objects
 - lines, polygons, curves, curved surfaces
 - camera
 - pinhole camera, lens systems, orthogonal
 - shading
 - light interacting with material
- illustration of rendering capabilities
 - Shutterbug series by Williams and Siegel using Pixar's Renderman
 - www.siggraph.org/education/materials/HyperGraph/shutbug.htm
Modelling Transformation: Object Placement
Viewing Transformation: Camera Placement
Perspective Projection
Depth Cueing
Depth Clipping
Colored Wireframes
Hidden Line Removal
Hidden Surface Removal
Per-Polygon Shading
Gouraud Shading
Specular Reflection
Phong Shading
Curved Surfaces
Complex Lighting and Shading
Texture Mapping
Displacement Mapping
Reflection Mapping
Modelling

- generating models
 - lines, curves, polygons, smooth surfaces
 - digital geometry
Animation

• generating motion
 • interpolating between frames, states

http://www.cs.ubc.ca/~van/papers/doodle.html
Readings

• today
 • FCG Chap 1

• Wed (last time)
 • FCG Chap 2
 • except 2.7 (covered later)
 • FCG Chap 5
 • except 5.4