Outline
- defining computer graphics
- course structure
- course content overview

What is Computer Graphics?
- create or manipulate images with computer
 - this course: algorithms for image generation

What is CG used for?
- movies
- animation
- special effects

What is CG used for?
- images
 - design
 - advertising
 - art

What is CG used for?
- virtual reality / immersive displays

What is CG used for?
- graphical user interfaces
- modeling systems
- applications
- simulation & visualization

Real or CG?
http://www.alias.com/eng/etc/fakeorfoto/quiz.html

Expectations
- hard course!
- heavy programming and heavy math
- fun course!
 - graphics programming addictive, create great demos
 - programming prereq
 - CPSC 221 (Program Design and Data Structures)
 - course language is C++/C
 - math prereq
 - MATH 200 (Calculus III)
 - MATH 221/223 (Matrix Algebra/Linear Algebra)

Course Structure
- 39% programming projects
 - 8% project 1 (building beasties with cubes and math)
 - 8% project 2
 - 8% project 3
 - 15% project 4 (create your own graphics game)
 - 25% final
 - 20% midterm (week 9 Fri 3/8)
 - 16% written assignments
 - 4% each HW 1/2/3/4
- programming projects and homeworks synchronized

Programming Projects
- structure
 - C++, Linux
 - OpenGL graphics library
 - GLUT for platform-independent windows/UI
 - face to face grading in lab
 - Hall of Fame
 - first project: building beasties
 - previous years: bison, spiders, armadillos, giraffes, frogs, elephants, birds, poodles, dinos, cats...
 - last project: create your own graphics game

Late Work
- 3 grace days
 - for unforeseen circumstances
 - strong recommendation: don't use early in term
 - handing in late uses up automatically unless you tell us
 - otherwise: 50% if one day (24 hrs) late, 0% afterwards
- only exception: severe illness or crisis
 - as per UBC rules
 - must let me know ASAP (in person or email)
 - at latest, 7 days after return to school
 - must also turn in form
 - with documentation (doctor note)
Regrading
- to request assignment or exam regrade
 - give me paper to be regraded, and also in writing
 - detailed explanation why you think grader was wrong
 - I will not accept until next class after solutions handed out
 - exception: simple arithmetic errors
- I may regrade entire assignment
 - thus even if I agree with your original request, your score may nevertheless end up higher or lower

Course Information
- course web page is main resource
- updated often, reload frequently
- discussion group: Piazza
 - signup: https://piazza.com/ubc.ca/spring2013/cpsc314
 - standard: https://piazza.com/class#spring2013/cpsc314
 - use Piazza, not direct email, for all questions
 - make posts private if you need to post your code

Teaching Staff
- instructor: Tamara Munzner
 - call me Tamara or Prof. Munzner, your choice
 - tmm@cs.ubc.ca
 - office hrs in ICICS/CS 005 (our lab)
 - Fridays right after class, 2-3
 - or by appointment in X661
- TAs: Peter Beshai, James Gregson, Yufeng Zhu
 - pbeshai@cs, jgregson@cs, mike323zyf@gmail

Labs
- labs start next week, no labs this week
- attend one (or more) labs per week
 - Mon 2-3, Tue 1-2, Fri 12-1
 - TA coverage TBA
 - mix of activities
 - example problems in spirit of written assignments and exams
 - help with programming projects
 - tutorials
 - no deliverables (unlike intro classes)
 - strongly recommend that you attend
 - if you can’t attend your regular one, ok to drop by another if there’s space

Textbooks
- Fundamentals of Computer Graphics
 - Peter Shirley, AK Peters, 3rd edition
- OpenGL Programming Guide, v 3.1
 - OpenGL Architecture Review Board
 - v 1.1 available for free online
 - aka “The Red Book”
 - readings posted on schedule page
 - strongly encouraged but not mandatory

Learning OpenGL
- this is a graphics course using OpenGL
 - not a course "on" OpenGL
- upper-level class: learning APIs mostly on your own
 - only minimal lecture coverage
 - basics, some of the tricky bits
- OpenGL Red Book
 - many tutorial sites on the web
 - nehe.gamedev.net

Citation
- cite all sources of information
 - what to cite
 - study group members, books, web sites
 - where to cite it
 - README for programming projects
 - end of writeup for written assignments

This Course
- we cover
 - basic algorithms for
 - rendering – displaying models
 - (modeling – generating models)
 - (animation – generating motion)
 - programming in OpenGL, C++
- we do not cover
 - art/design issues
 - commercial software packages

Other Graphics Courses
- CPSC 424: Geometric Modeling
 - offered now
- CPSC 426: Computer Animation
 - offered next year
- CPSC 514: Image-based Modeling and Rendering
- CPSC 526: Computer Animation
- CPSC 533A: Digital Geometry
- CPSC 533B: Animation Physics
- CPSC 547: Information Visualization
- CPSC 530P: Sensorimotor Computation

Rendering
- creating images from models
 - geometric objects
 - lines, polygons, curves, curved surfaces
 - camera
 - pinhole camera, lens systems, orthogonal
 - shading
 - light interacting with material
 - illustration of rendering capabilities
 - Shutterbug series by Williams and Siegel using Pixar’s Renderman
 - www.siggraph.org/education/materials/WebGraphshuttlebug.htm

Teaching Staff
- instructor: Tamara Munzner
 - call me Tamara or Prof. Munzner, your choice
 - tmm@cs.ubc.ca
 - office hrs in ICICS/CS 005 (our lab)
 - Fridays right after class, 2-3
 - or by appointment in X661
- TAs: Peter Beshai, James Gregson, Yufeng Zhu
 - pbeshai@cs, jgregson@cs, mike323zyf@gmail

Labs
- labs start next week, no labs this week
- attend one (or more) labs per week
 - Mon 2-3, Tue 1-2, Fri 12-1
 - TA coverage TBA
 - mix of activities
 - example problems in spirit of written assignments and exams
 - help with programming projects
 - tutorials
 - no deliverables (unlike intro classes)
 - strongly recommend that you attend
 - if you can’t attend your regular one, ok to drop by another if there’s space

Textbooks
- Fundamentals of Computer Graphics
 - Peter Shirley, AK Peters, 3rd edition
- OpenGL Programming Guide, v 3.1
 - OpenGL Architecture Review Board
 - v 1.1 available for free online
 - aka “The Red Book”
 - readings posted on schedule page
 - strongly encouraged but not mandatory

Learning OpenGL
- this is a graphics course using OpenGL
 - not a course "on" OpenGL
- upper-level class: learning APIs mostly on your own
 - only minimal lecture coverage
 - basics, some of the tricky bits
- OpenGL Red Book
 - many tutorial sites on the web
 - nehe.gamedev.net

Citation
- cite all sources of information
 - what to cite
 - study group members, books, web sites
 - where to cite it
 - README for programming projects
 - end of writeup for written assignments

This Course
- we cover
 - basic algorithms for
 - rendering – displaying models
 - (modeling – generating models)
 - (animation – generating motion)
 - programming in OpenGL, C++
- we do not cover
 - art/design issues
 - commercial software packages

Other Graphics Courses
- CPSC 424: Geometric Modeling
 - offered now
- CPSC 426: Computer Animation
 - offered next year
- CPSC 514: Image-based Modeling and Rendering
- CPSC 526: Computer Animation
- CPSC 533A: Digital Geometry
- CPSC 533B: Animation Physics
- CPSC 547: Information Visualization
- CPSC 530P: Sensorimotor Computation

Rendering
- creating images from models
 - geometric objects
 - lines, polygons, curves, curved surfaces
 - camera
 - pinhole camera, lens systems, orthogonal
 - shading
 - light interacting with material
 - illustration of rendering capabilities
 - Shutterbug series by Williams and Siegel using Pixar’s Renderman
 - www.siggraph.org/education/materials/WebGraphshuttlebug.htm
Depth Cueing

Depth Clipping

Colored Wireframes

Hidden Line Removal

Hidden Surface Removal

Per-Polygon Shading

Gouraud Shading

Specular Reflection

Phong Shading

Curved Surfaces

Complex Lighting and Shading

Texture Mapping

Modelling
- generating models
- lines, curves, polygons, smooth surfaces
- digital geometry

Animation
- generating motion
- interpolating between frames, states

http://www.cs.ubc.ca/~van/papers/doodle.html
Readings

- today
 - FCG Chap 1
- Wed (last time)
 - FCG Chap 2
 - except 2.7 (covered later)
 - FCG Chap 5
 - except 5.4