Week 1, Fri Jan 4

What is Computer Graphics?
- create or manipulate images with computer
 - this course: algorithms for image generation

What is CG used for?
- movies
 - animation
 - special effects
What is CG used for?

- computer games
- images
- design
- advertising
- art
- virtual reality / immersive displays
- graphical user interfaces
- modeling systems
- applications
- simulation & visualization
Real or CG?

http://www.alias.com/eng/etc/fakeorfoto/quiz.html
Expectations

- hard course!
 - heavy programming and heavy math
- fun course!
 - graphics programming addictive, create great demos
- programming prereq
 - CPSC 221 (Program Design and Data Structures)
- course language is C++/C
- math prereq
 - MATH 200 (Calculus III)
 - MATH 221/223 (Matrix Algebra/Linear Algebra)

Course Structure

- 39% programming projects
 - 8% project 1 (building beasties with cubes and math)
 - 8% project 2
 - 8% project 3
 - 15% project 4 (create your own graphics game)
- 25% final
- 20% midterm (week 9 Fri 3/8)
- 16% written assignments
 - 4% each HW 1/2/3/4
- programming projects and homeworks synchronized

Programming Projects

- structure
 - C++, Linux
 - OK to cross-platform develop on Windows, Mac
 - OpenGL graphics library
 - GLUT for platform-independent windows/UI
 - face to face grading in lab
- Hall of Fame
 - first project: building beasties
 - previous years: bison, spiders, armadillos, giraffes, frogs, elephants, birds, poodles, dinos, cats…
 - last project: create your own graphics game

Late Work

- 3 grace days
 - for unforeseen circumstances
 - strong recommendation: don’t use early in term
 - handing in late uses up automatically unless you tell us
- otherwise: 50% if one day (24 hrs) late, 0% afterwards
- only exception: severe illness or crisis
 - as per UBC rules
 - must let me know ASAP (in person or email)
 - at latest, 7 days after return to school
 - must also turn in form
 - with documentation (doctor note)
Regrading
• to request assignment or exam regrade
 • give me paper to be regraded, and also in writing
 • what problem you're disputing
 • detailed explanation why you think grader was wrong
• I will not accept until next class after solutions handed out
 • exception: simple arithmetic errors
• I may regrade entire assignment
 • thus even if I agree with your original request, your score may nevertheless end up higher or lower

Course Information
• course web page is main resource
 • http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013
 • updated often, reload frequently
• discussion group: Piazza
 • signup: https://piazza.com/ubc.ca/spring2013/cpsc314
 • standard: https://piazza.com/class#spring2013/cpsc314
 • use Piazza, not direct email, for all questions
 • make posts private if you need to post your code

Teaching Staff
• instructor: Tamara Munzner
 • call me Tamara or Prof. Munzner, your choice
 • tmm@cs.ubc.ca
 • office hrs in ICICS/CS 005 (our lab)
 • Fridays right after class, 2-3
 • or by appointment in X661
• TAs: Peter Beshai, James Gregson, Yufeng Zhu
 • pbeshai@cs, jgregson@cs, mike323zyf@gmail

Labs
• labs start next week, no labs this week
• attend one (or more) labs per week
 • Mon 2-3, Tue 1-2, Fri 12-1
 • TA coverage TBA
 • mix of activities
 • example problems in spirit of written assignments and exams
 • help with programming projects
 • tutorials
 • no deliverables (unlike intro classes)
 • strongly recommend that you attend
 • if you can't attend your regular one, ok to drop by another if there's space
Textbooks

- Fundamentals of Computer Graphics
 - Peter Shirley, AK Peters, 3rd edition
- OpenGL Programming Guide, v 3.1
 - OpenGL Architecture Review Board
 - v 1.1 available for free online
 - aka “The Red Book”

 - readings posted on schedule page
 - strongly encouraged but not mandatory

Learning OpenGL

- this is a graphics course using OpenGL
 - not a course *on* OpenGL
- upper-level class: learning APIs mostly on your own
 - only minimal lecture coverage
 - basics, some of the tricky bits
- OpenGL Red Book
- many tutorial sites on the web
 - nehe.gamedev.net

Citation

- cite all sources of information
 - what to cite
 - study group members, books, web sites
 - where to cite it
 - README for programming projects
 - end of writeup for written assignments

Plagiarism and Cheating

- don’t cheat, I will prosecute
 - insult to your fellow students and to me
- programming and homework writeups must be individual work
 - can discuss ideas, browse Web
 - cannot just copy code or answers
 - cannot do team coding
 - exception: final project can be team of two
- you must be able to explain algorithms during face-to-face demo
 - or no credit for that part of assignment
 - and possibly prosecution
Plagiarism and Cheating

• submit statement that you’ve read and understood before we’ll mark your work
 • http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013/cheat.html

Course Content Overview

This Course

• we cover
 • basic algorithms for
 • rendering – displaying models
 • (modeling – generating models)
 • (animation – generating motion)
 • programming in OpenGL, C++
• we do not cover
 • art/design issues
 • commercial software packages

Other Graphics Courses

• CPSC 424: Geometric Modeling
 • offered now
• CPSC 426: Computer Animation
 • offered next year
• CPSC 514: Image-based Modeling and Rendering
• CPSC 526: Computer Animation
• CPSC 533A: Digital Geometry
• CPSC 533B: Animation Physics
• CPSC 547: Information Visualization
• CPSC 530P: Sensorimotor Computation
Rendering

- creating images from models
 - geometric objects
 - lines, polygons, curves, curved surfaces
 - camera
 - pinhole camera, lens systems, orthogonal
 - shading
 - light interacting with material
- illustration of rendering capabilities
 - Shutterbug series by Williams and Siegel using Pixar's Renderman
 - www.siggraph.org/education/materials/HyperGraph/shutbug.htm

Modelling Transformation: Object Placement

Viewing Transformation: Camera Placement

Perspective Projection
Depth Cueing

Depth Clipping

Colored Wireframes

Hidden Line Removal
Hidden Surface Removal

Per-Polygon Shading

Gouraud Shading

Specular Reflection
Displacement Mapping

Reflection Mapping

Modelling
- generating models
 - lines, curves, polygons, smooth surfaces
 - digital geometry

Animation
- generating motion
 - interpolating between frames, states

http://www.cs.ubc.ca/~van/papers/doodle.html
Readings

- today
 - FCG Chap 1
- Wed (last time)
 - FCG Chap 2
 - except 2.7 (covered later)
 - FCG Chap 5
 - except 5.4