Clarification: Blinn-Phong Model

- only change vs Phong model is to have the specular calculation to use $(\mathbf{h} \cdot \mathbf{n})$ instead of $(\mathbf{v} \cdot \mathbf{r})$

- full Blinn-Phong lighting model equation has ambient, diffuse, specular terms

\[
I_{\text{total}} = k_a I_{\text{ambient}} + \sum_{i=1}^{\# \text{lights}} I_i (k_d (\mathbf{n} \cdot \mathbf{l}_i) + k_s (\mathbf{n} \cdot \mathbf{h}_i)^{n_{\text{shiny}}})
\]

- just like full Phong model equation

\[
I_{\text{total}} = k_a I_{\text{ambient}} + \sum_{i=1}^{\# \text{lights}} I_i (k_d (\mathbf{n} \cdot \mathbf{l}_i) + k_s (\mathbf{v} \cdot \mathbf{r}_i)^{n_{\text{shiny}}})
\]

Reading for Hidden Surfaces

- FCG Sect 8.2.3 Z-Buffer
- FCG Sect 12.4 BSP Trees
 - (8.1, 8.2 2nd ed)
- FCG Sect 3.4 Alpha Compositing
 - (N/A 2nd ed)

Hidden Surface Removal
Occlusion

• for most interesting scenes, some polygons overlap

• to render the correct image, we need to determine which polygons occlude which

Painter’s Algorithm

• simple: render the polygons from back to front, “painting over” previous polygons

• draw blue, then green, then orange

• will this work in the general case?

Painter’s Algorithm: Problems

• intersecting polygons present a problem

• even non-intersecting polygons can form a cycle with no valid visibility order:

Analytic Visibility Algorithms

• early visibility algorithms computed the set of visible polygon fragments directly, then rendered the fragments to a display:
Analytic Visibility Algorithms

- *what is the minimum worst-case cost of computing the fragments for a scene composed of n polygons?*
- *answer: \(O(n^2) \)*

Binary Space Partition Trees (1979)

- BSP Tree: partition space with binary tree of planes
 - idea: divide space recursively into half-spaces by choosing splitting planes that separate objects in scene
 - preprocessing: create binary tree of planes
 - runtime: correctly traversing this tree enumerates objects from back to front

Creating BSP Trees: Objects
Splitting Objects

- no bunnies were harmed in previous example
- but what if a splitting plane passes through an object?
 - split the object; give half to each node

Traversing BSP Trees

- tree creation independent of viewpoint
 - preprocessing step
- tree traversal uses viewpoint
 - runtime, happens for many different viewpoints
- each plane divides world into near and far
 - for given viewpoint, decide which side is near and which is far
 - check which side of plane viewpoint is on independently for each tree vertex
 - tree traversal differs depending on viewpoint!
 - recursive algorithm
 - recurse on far side
 - draw object
 - recurse on near side

```c
renderBSP(BSPtree *T)
    BSPtree *near, *far;
    if (eye on left side of T->plane)
        near = T->left; far = T->right;
    else
        near = T->right; far = T->left;
    renderBSP(far);
    if (T is a leaf node)
        renderObject(T)
    renderBSP(near);
```
- decide independently at each tree vertex
- not just left or right child!
BSP Trees: Viewpoint A
BSP Tree Traversal: Polygons

- split along the plane defined by any polygon from scene
- classify all polygons into positive or negative half-space of the plane
 - if a polygon intersects plane, split polygon into two and classify them both
- recurse down the negative half-space
- recurse down the positive half-space

BSP Demo

- useful demo: http://symbolcraft.com/graphics/bsp
BSP Demo

- order of insertion can affect half-plane extent

Summary: BSP Trees

- **pros:**
 - simple, elegant scheme
 - correct version of painter's algorithm back-to-front rendering approach
 - was very popular for video games (but getting less so)

- **cons:**
 - slow to construct tree: $O(n \log n)$ to split, sort
 - splitting increases polygon count: $O(n^2)$ worst-case
 - computationally intense preprocessing stage restricts algorithm to static scenes

The Z-Buffer Algorithm (mid-70's)

- BSP trees proposed when memory was expensive
 - first 512x512 framebuffer was >$50,000!
- Ed Catmull proposed a radical new approach called z-buffering
- the big idea:
 - resolve visibility independently at each pixel

The Z-Buffer Algorithm

- we know how to rasterize polygons into an image discretized into pixels:
The Z-Buffer Algorithm

- what happens if multiple primitives occupy the same pixel on the screen?
 - which is allowed to paint the pixel?

The Z-Buffer Algorithm

- idea: retain depth after projection transform
 - each vertex maintains z coordinate
 - relative to eye point
 - can do this with canonical viewing volumes

The Z-Buffer Algorithm

- augment color framebuffer with Z-buffer or depth buffer which stores Z value at each pixel
 - at frame beginning, initialize all pixel depths to ∞
 - when rasterizing, interpolate depth (Z) across polygon
 - check Z-buffer before storing pixel color in framebuffer and storing depth in Z-buffer
 - don’t write pixel if its Z value is more distant than the Z value already stored there

Interpolating Z

- barycentric coordinates
 - interpolate Z like other planar parameters
Z-Buffer

- store \((r,g,b,z)\) for each pixel
- typically 8+8+8+24 bits, can be more

```plaintext
for all \(i,j\) {
    Depth\[i,j\] = MAX_DEPTH
    Image\[i,j\] = BACKGROUND_COLOUR
}
for all polygons \(P\) {
    for all pixels in \(P\) {
        if (Z_pixel < Depth\[i,j\]) {
            Image\[i,j\] = C_pixel
            Depth\[i,j\] = Z_pixel
        }
    }
}
```

Depth Test Precision

- reminder: perspective transformation maps eye-space (view) \(z\) to NDC \(z\)

\[
\begin{bmatrix}
E & 0 & A & 0 \\
0 & F & B & 0 \\
0 & 0 & C & D \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
\frac{Ex + Az}{z} \\
\frac{Fy + Bz}{z} \\
\frac{Cz + D}{z} \\
1
\end{bmatrix}
\]

- thus:

\[
z_{\text{NDC}} = \left(C + \frac{D}{\tilde{z}_{\text{eye}}} \right)
\]

Depth Test Precision

- therefore, depth-buffer essentially stores \(1/z\), rather than \(z\)!
- issue with integer depth buffers
 - high precision for near objects
 - low precision for far objects

- low precision can lead to depth fighting for far objects
 - two different depths in eye space get mapped to same depth in framebuffer
 - which object “wins” depends on drawing order and scan-conversion
 - gets worse for larger ratios \(f:n\)
 - rule of thumb: \(f:n < 1000\) for 24 bit depth buffer
- with 16 bits cannot discern millimeter differences in objects at 1 km distance
- demo: sjbaker.org/steve/omniv/love_your_z_buffer.html
More: Integer Depth Buffer

- reminder from picking discussion
 - depth lies in the NDC z range \([0,1]\)
 - format: multiply by \(2^n - 1\) then round to nearest int
 - where \(n\) = number of bits in depth buffer
- 24 bit depth buffer = \(2^{24}\) = 16,777,216 possible values
 - small numbers near, large numbers far
- consider depth from VCS: \((1<<N) \times (a + b / z)\)
 - \(N\) = number of bits of Z precision
 - \(a = zFar / (zFar - zNear)\)
 - \(b = zFar \times zNear / (zNear - zFar)\)
 - \(z\) = distance from the eye to the object

Z-Buffer Algorithm Questions

- how much memory does the Z-buffer use?
- does the image rendered depend on the drawing order?
- does the time to render the image depend on the drawing order?
- how does Z-buffer load scale with visible polygons? with framebuffer resolution?

Z-Buffer Pros

- simple!!!
- easy to implement in hardware
 - hardware support in all graphics cards today
- polygons can be processed in arbitrary order
- easily handles polygon interpenetration
- enables deferred shading
 - rasterize shading parameters (e.g., surface normal) and only shade final visible fragments

Z-Buffer Cons

- poor for scenes with high depth complexity
 - need to render all polygons, even if most are invisible
- shared edges are handled inconsistently
 - ordering dependent
Z-Buffer Cons

- requires lots of memory
 - (e.g. 1280x1024x32 bits)
- requires fast memory
 - Read-Modify-Write in inner loop
- hard to simulate translucent polygons
 - we throw away color of polygons behind closest one
 - works if polygons ordered back-to-front
 - extra work throws away much of the speed advantage

Hidden Surface Removal

- two kinds of visibility algorithms
 - object space methods
 - image space methods

Object Space Algorithms

- determine visibility on object or polygon level
 - using camera coordinates
- resolution independent
 - explicitly compute visible portions of polygons
- early in pipeline
 - after clipping
- requires depth-sorting
 - painter’s algorithm
 - BSP trees

Image Space Algorithms

- perform visibility test for in screen coordinates
 - limited to resolution of display
 - Z-buffer: check every pixel independently
 - performed late in rendering pipeline
Projective Rendering Pipeline

- OCS - object coordinate system
- WCS - world coordinate system
- VCS - viewing coordinate system
- CCS - clipping coordinate system
- NDCS - normalized device coordinate system
- DCS - device coordinate system

GlutInitWindowSize(w,h)
glFrustum(...) glRotatef(th,x,y,z) glTranslatef(x,y,z) glVertex3f(x,y,z)

Backface Culling

- on the surface of a closed orientable manifold, polygons whose normals point away from the camera are always occluded:

Back-Face Culling

- note: backface culling alone doesn’t solve the hidden-surface problem!
Back-Face Culling

- not rendering backfacing polygons improves performance
 - by how much?
 - reduces by about half the number of polygons to be considered for each pixel
 - optimization when appropriate

Back-Face Culling

- most objects in scene are typically “solid”
- rigorously: orientable closed manifolds
 - orientable: must have two distinct sides
 - cannot self-intersect
 - a sphere is orientable since has two sides, 'inside' and 'outside'.
 - a Mobius strip or a Klein bottle is not orientable
 - closed: cannot “walk” from one side to the other
 - sphere is closed manifold
 - plane is not

Back-Face Culling

- examples of non-manifold objects:
 - a single polygon
 - a terrain or height field
 - polyhedron w/ missing face
 - anything with cracks or holes in boundary
 - one-polygon thick lampshade
Back-face Culling: NDCS

- **VCS**
 - y
 - z
 - eye

- **NDCS**
 - y
 - z
 - eye

works to cull if \(N_Z > 0 \)

Invisible Primitives

- **why might a polygon be invisible?**
 - polygon outside the *field of view / frustum*
 - solved by *clipping*
 - polygon is *backfacing*
 - solved by *backface culling*
 - polygon is *occluded* by object(s) nearer the viewpoint
 - solved by *hidden surface removal*

Blending

INVISIBLE EVERYTHING
Alpha and Premultiplication

- specify opacity with alpha channel α
 - $\alpha=1$: opaque, $\alpha=.5$: translucent, $\alpha=0$: transparent
- how to express a pixel is half covered by a red object?
 - obvious way: store color independent from transparency (r, g, b, α)
 - intuition: alpha as transparent colored glass
 - pixel value is $(1, 0, 0, 0.5)$
 - upside: easy to change opacity of image, very intuitive
 - downside: compositing calculations are more difficult - not associative
 - elegant way: premultiply by α so store $(\alpha r, \alpha g, \alpha b, \alpha)$
 - intuition: alpha as screen/mesh
 - RGB specifies how much color object contributes to scene
 - alpha specifies how much object obscures whatever is behind it (coverage)
 - alpha of .5 means half the pixel is covered by the color, half completely transparent
 - only one 4-tuple represents 100% transparency: $(0, 0, 0, 0)$
 - pixel value is $(0.5, 0, 0, 0.5)$
 - upside: compositing calculations easy (& additive blending for glowing!)
 - downside: less intuitive

Alpha and Simple Compositing

- F is foreground, B is background, F over B
- premultiply math: uniform for each component, simple, linear
 - $R' = R_F + (1-A_F)R_B$
 - $G' = G_F + (1-A_F)G_B$
 - $B' = B_F + (1-A_F)B_B$
 - $A' = A_F + (1-A_F)A_B$
 - associative: easy to chain together multiple operations
- non-premultiply math: trickier
 - $R' = (R_F A_F + (1-A_F)R_B A_B)/A'$
 - $G' = (G_F A_F + (1-A_F)G_B A_B)/A'$
 - $B' = (B_F A_F + (1-A_F)B_B A_B)/A'$
 - $A' = A_F + (1-A_F)A_B$
 - don’t need divide if F or B is opaque. but still... oof!
 - chaining difficult, must avoid double-counting with intermediate ops

Alpha and Complex Compositing

- foreground color A, background color B
- how might you combine multiple elements?
 - Compositing Digital Images, Porter and Duff, Siggraph '84
 - pre-multiplied alpha allows all cases to be handled simply
Alpha Examples

• blend white and clear equally (50% each)
 • white is (1,1,1,1), clear is (0,0,0,0), black is (0,0,0,1)
 • premultiplied: multiply componentwise by 50% and just add together
 • (.5,.5,.5,.5) is indeed half-transparent white in premultiply format
 • 4-tuple would mean half-transparent grey in non-premultiply format
• premultiply allows both conventional blend and additive blend
 • alpha 0 and RGB nonzero: glowing/luminescent
 • (nice for particle systems, stay tuned)
• for more: see nice writeup from Alvy Ray Smith
 • technical academy award for Smith, Catmull, Porter, Duff
 • http://www.alvyray.com/Awards/AwardsAcademy96.htm