Parametric Curves

Tamara Munzner

Curves

- FCG Chap 15 Curves
- Ch 13 2nd edition
- parametric form for a line:

$$
\begin{aligned}
& x=x_{0} t+(1-t) x_{1} \\
& y=y_{0} t+(1-t) y_{1} \\
& z=z_{0} t+(1-t) z_{1}
\end{aligned}
$$

- x, y and z are each given by an equation that involves:
- parameter t
- some user specified control points, x_{0} and x_{1}
- this is an example of a parametric curve
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Splines

- a spline is a parametric curve defined by control points
- term "spline" dates from engineering drawing, where a spline was a piece of flexible wood used to draw smooth curves
- control points are adjusted by the user to
control shape of curve

Splines - History

- draftsman used 'ducks' and strips of wood (splines) to draw curves
- wood splines have secondorder continuity, pass through the control points

ducks trace out curve

Hermite Spline

- hermite spline is curve for which user provides:
- endpoints of curve
- parametric derivatives of curve at endpoints - parametric derivatives are $d x / d t, d y / d t, d z / d t$
- more derivatives would be required for higher order curves

Basis Functions

- a point on a Hermite curve is obtained by multiplying each control point by some function and summing
- functions are called basis functions

Sample Hermite Curves

Bézier Curves

- similar to Hermite, but more intuitive definition of endpoint derivatives
- four control points, two of which are knots

Bézier Curves

- derivative values of Bezier curve at knots dependent on adjacent points

$$
\begin{aligned}
& \nabla p_{1}=3\left(p_{2}-p_{1}\right) \\
& \nabla p_{4}=3\left(p_{4}-p_{3}\right)
\end{aligned}
$$

Bézier Blending Functions

- look at blending functions
- family of polynomials called order-3 Bernstein polynomial - $\mathrm{C}(3, \mathrm{k}) \mathrm{t}^{\mathrm{k}}(1-\mathrm{t})^{3-k} ; 0<=\mathrm{k}<=3$ - all positive in interval $[0,1]$
- sum is equal to 1

Bézier Curves

- interpolate between first, last control points
- $1^{\text {st }}$ point' s tangent along line joining $1^{\text {st }}, 2^{\text {nd }} \mathrm{pts}$

- $4^{\text {th }}$ point's tangent along line joining $3^{\text {rd }}, 4^{\text {th }}$ pts

Comparing Hermite and Bézier

Hermite Specification
curve will always remain within convex hull (bounding region) defined by control points

Bézier Curves

avery point on curve is linea combination of control points positive
sum of weights is 1 therefore, curve is a convex combination of the control points

Rendering Bezier Curves: Simple
evaluate curve at fixed set of parameter values, join points with straight lines

- disadvantages:
- expensive to evaluate the curve at many points
expensive to evaluate the curve at many points
no easy way of knowing how fine to sample points and maybe sampling rate must be different along curve
no easy way to adapt: hard to measure deviation of
line segment from exact curve

Sub-Dividing Bezier Curves

- step 3: find the midpoint of the line joining M_{012}, M_{123}. call it M_{0123}

Longer Curves
a single cubic Bezier or Hermite curve can only capture a small class of curves - at most 2 inflection points
ne solution is to raise the degre
polynomials

- control is not local, one control point influences entire curve
better solution is to join pieces of cubic curre together into piecewise cub
curves
- total curve can be broken into pieces, each of which is cubic
local control: each control point only influences a limited part of the curve
teraction and design is much easier

Rendering Beziers: Subdivision

- a cubic Bezier curve can be broken into two shorter cubic Bezier curves that exactly cover original curve
- suggests a rendering algorithm:
- keep breaking curve into sub-curves
- stop when control points of each sub-curve are nearly collinear
- draw the control polygon: polygon formed by control points

Sub-Dividing Bezier Curves

- step 1: find the midpoints of the lines joining the original control vertices. call them M_{01}, M_{12}, M_{23}

Sub-Dividing Bezier Curves

- continue process to create smooth curve
- curve P_{0}, M_{01},
from $t=0$ to $t=0.5$ - curve $M_{0123}, M_{123}, M_{23}, P_{3}$ exactly follows original from $t=0.5$ to $t=1$

Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html

Continuity

- when two curves joined, typically want some degree of continuity across knot boundary
- C0, "C-zero", point-wise continuous, curves
share same point where they join
- C1, "C-one", continuous derivatives
- C2, "C-two", continuous second derivatives

Achieving Continuity

Hermite curves
user specifies derivatives, so C^{1} by sharing points and derivatives across knot
Bezier curves
they interpolate endpoints, so C^{0} by sharing control pts - introduce additional constraints to get C^{1}

- parametric derivative is a constant multiple of vector joining first
last 2 control points so C^{1} achieved by setting $P_{0,3}=P_{1,0}=J$, and making $P_{0,2}$ and J and - $\mathrm{P}_{1,1}$ collinear, with C comes from further constraints on $P_{0,1}$ and $\mathrm{P}_{1,2}$
leads to...

B-Spline Curve

- start with a sequence of control points
- select four from middle of sequence
- Bezier and Hermite goes between p_{i-2} and p_{i+1} - B-Spline doesn't interpolate (touch) any of them but

B-Spline

- by far the most popular spline used
- $\mathrm{C}_{0}, \mathrm{C}_{1}$, and C_{2} continuous
approximates the going through p_{i-1} and p_{i}

Geometric Continuity

- derivative continuity is important for animation - if object moves along curve with constant parametric speed, should be no sudden jump at knots
- for other applications, tangent continuity suffices - requires that the tangents point in the same direction - referred to as G^{1} geometric continuity
- curves could be made C^{1} with a re-parameterization - geometric version of C^{2} is G^{2}, based on curves having the same radius of curvature across the knot

